Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AJNR Am J Neuroradiol ; 44(5): 523-529, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055159

RESUMEN

BACKGROUND AND PURPOSE: In patients with stroke, IV cone-beam CTA in the angiography suite could be an alternative to CTA to shorten the door-to-thrombectomy time. However, image quality in cone-beam CTA is typically limited by artifacts. This study evaluated a prototype dual-layer detector cone-beam CT angiography versus CTA in patients with stroke. MATERIALS AND METHODS: A prospective, single-center trial enrolled consecutive patients with ischemic or hemorrhagic stroke on initial CT. Intracranial arterial segment vessel conspicuity and artifact presence were evaluated on dual-layer cone-beam CTA 70-keV virtual monoenergetic images and CTA. Eleven predetermined vessel segments were matched for every patient. Twelve patients were necessary to show noninferiority to CTA. Noninferiority was determined by the exact binomial test; the 1-sided lower performance boundary was prospectively set to 80% (98.75% CI). RESULTS: Twenty-one patients had matched image sets (mean age, 72 years). After excluding examinations with movement or contrast media injection issues, all readers individually considered dual-layer cone-beam CT angiography noninferior to CTA (CI boundary, 93%, 84%, 80%, respectively) when evaluating arteries relevant in candidates for intracranial thrombectomy. Artifacts were more prevalent compared with CTA. The majority assessment rated each individual segment except M1 as having noninferior conspicuity compared with CTA. CONCLUSIONS: In a single-center stroke setting, dual-layer detector cone-beam CTA virtual monoenergetic images are noninferior to CTA under certain conditions. Notably, the prototype is hampered by a long scan time and is not capable of contrast media bolus tracking. After excluding examinations with such scan issues, readers considered dual-layer detector cone-beam CTA noninferior to CTA, despite more artifacts.


Asunto(s)
Medios de Contraste , Accidente Cerebrovascular , Humanos , Anciano , Angiografía por Tomografía Computarizada/métodos , Estudios Prospectivos , Rayos X , Angiografía , Accidente Cerebrovascular/diagnóstico por imagen
2.
Br J Radiol ; 87(1040): 20130798, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24874766

RESUMEN

OBJECTIVE: To evaluate the capabilities of photon counting spectral CT to differentiate components of coronary atherosclerotic plaque based on differences in spectral attenuation and iodine-based contrast agent concentration. METHODS: 10 calcified and 13 lipid-rich non-calcified histologically demonstrated atheromatous plaques from post-mortem human coronary arteries were scanned with a photon counting spectral CT scanner. Individual photons were counted and classified in one of six energy bins from 25 to 70 keV. Based on a maximum likelihood approach, maps of photoelectric absorption (PA), Compton scattering (CS) and iodine concentration (IC) were reconstructed. Intensity measurements were performed on each map in the vessel wall, the surrounding perivascular fat and the lipid-rich and the calcified plaques. PA and CS values are expressed relative to pure water values. A comparison between these different elements was performed using Kruskal-Wallis tests with pairwise post hoc Mann-Whitney U-tests and Sidak p-value adjustments. RESULTS: RESULTS for vessel wall, surrounding perivascular fat and lipid-rich and calcified plaques were, respectively, 1.19 ± 0.09, 0.73 ± 0.05, 1.08 ± 0.14 and 17.79 ± 6.70 for PA; 0.96 ± 0.02, 0.83 ± 0.02, 0.91 ± 0.03 and 2.53 ± 0.63 for CS; and 83.3 ± 10.1, 37.6 ± 8.1, 55.2 ± 14.0 and 4.9 ± 20.0 mmol l(-1) for IC, with a significant difference between all tissues for PA, CS and IC (p < 0.012). CONCLUSION: This study demonstrates the capability of energy-sensitive photon counting spectral CT to differentiate between calcifications and iodine-infused regions of human coronary artery atherosclerotic plaque samples by analysing differences in spectral attenuation and iodine-based contrast agent concentration. ADVANCES IN KNOWLEDGE: Photon counting spectral CT is a promising technique to identify plaque components by analysing differences in iodine-based contrast agent concentration, photoelectric attenuation and Compton scattering.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Autopsia , Medios de Contraste , Humanos , Fotones , Interpretación de Imagen Radiográfica Asistida por Computador , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...