Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Aging ; 4(4): 437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38580819
6.
Front Cell Neurosci ; 8: 267, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25237295

RESUMEN

In certain neurons from different brain regions, a brief burst of action potentials can activate a slow afterdepolarization (sADP) in the presence of muscarinic acetylcholine receptor agonists. The sADP, if suprathreshold, can contribute to persistent non-accommodating firing in some of these neurons. Previous studies have characterized a Ca(2+)-activated non-selective cation (CAN) current (ICAN ) that is thought to underlie the sADP. ICAN depends on muscarinic receptor stimulation and exhibits a dependence on neuronal activity, membrane depolarization and Ca(2+)-influx similar to that observed for the sADP. Despite the widespread occurrence of sADPs in neurons throughout the brain, the molecular identity of the ion channels underlying these events, as well as ICAN , remains uncertain. Here we used a combination of genetic, pharmacological and electrophysiological approaches to characterize the molecular mechanisms underlying the muscarinic receptor-dependent sADP in layer 5 pyramidal neurons of mouse prefrontal cortex. First, we confirmed that in the presence of the cholinergic agonist carbachol a brief burst of action potentials triggers a prominent sADP in these neurons. Second, we confirmed that this sADP requires activation of a PLC signaling cascade and intracellular calcium signaling. Third, we obtained direct evidence that the transient receptor potential (TRP) melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, contributes importantly to the sADP in the layer 5 neurons. In contrast, the closely related TRPM4 channel may play only a minor role in the sADP.

7.
J Neurosci ; 33(34): 13583-99, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966682

RESUMEN

In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question.


Asunto(s)
Potenciales de Acción/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Función Ejecutiva/fisiología , Memoria/fisiología , Neuronas/fisiología , Canales de Potasio/metabolismo , Corteza Prefrontal/citología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta de Elección/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Aprendizaje Seriado/efectos de los fármacos , Aprendizaje Seriado/fisiología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
9.
Neuron ; 72(4): 643-53, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-22099465

RESUMEN

Hippocampal CA1 and CA3 pyramidal neuron place cells encode the spatial location of an animal through localized firing patterns called "place fields." To explore the mechanisms that control place cell firing and their relationship to spatial memory, we studied mice with enhanced spatial memory resulting from forebrain-specific knockout of the HCN1 hyperpolarization-activated cation channel. HCN1 is strongly expressed in CA1 neurons and in entorhinal cortex grid cells, which provide spatial information to the hippocampus. Both CA1 and CA3 place fields were larger but more stable in the knockout mice, with the effect greater in CA1 than CA3. As HCN1 is only weakly expressed in CA3 place cells, their altered activity likely reflects loss of HCN1 in grid cells. The more pronounced changes in CA1 likely reflect the intrinsic contribution of HCN1. The enhanced place field stability may underlie the effect of HCN1 deletion to facilitate spatial learning and memory.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Canales de Potasio/deficiencia , Potenciales de Acción/genética , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Canales de Potasio/genética , Estabilidad Proteica
10.
Neuropharmacology ; 55(4): 459-63, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18619627

RESUMEN

It is well established that activation of group I metabotropic glutamate receptors (mGluRs) produces long-lasting alterations in synaptic efficacy. We now demonstrate that activation of mGluRs can also induce long-term alterations in synchronised network activity that are both induced and expressed in the absence of chemical synaptic transmission. Specifically, in hippocampal slices in which synaptic transmission was eliminated by perfusing with a Ca2+-free medium, the selective group I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) induced a persistent (>3h) enhancement (>2-fold) of the frequency of synchronised bursting activity. The underlying biochemical mechanism responsible for the induction of this form of plasticity was similar to that for DHPG-induced long-term depression (LTD) in that it required the activation of tyrosine phosphatases. Also, like DHPG-induced LTD, this form of neuronal plasticity could be reversed by application of the mGluR antagonist alpha-methyl-4-carboxyphenylglycine (MCPG). This unusual form of plasticity, which presumably also occurs when synaptic transmission is intact, could contribute to long-term alterations in synchronised activity in hippocampal neuronal networks.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Calcio/metabolismo , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Hipocampo/citología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de la radiación , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación
11.
Synapse ; 61(1): 24-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17068779

RESUMEN

Specific patterns of stimulation applied in the ventral hippocampus produce long-term potentiation (LTP) of postsynaptic synapses in the prefrontal cortex in vivo. The induction of LTP is dependent on NMDA receptors and cAMP-dependant kinase (PKA) activation. Yet little is known concerning the cellular mechanisms underlying the expression of this neocortical form of LTP. In the present study, we tested whether LTP at hippocampal to prefrontal cortex synapses leads to activation of DARPP-32 and CREB as well as defined the temporal regulation of the phosphorylation states of both proteins. Our data indicate a peak in CREB and DARPP-32 phosphorylation during the late phase of prefrontal LTP (2 h posttetanus). These findings support the hypothesis that prolonged expression of hippocampal-prefrontal cortex LTP depends on a synergistic mechanism involving phosphorylation of both CREB and DARPP-32 via activation of the cAMP/PKA-dependent pathway.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Animales , Hipocampo/ultraestructura , Masculino , Fosforilación , Corteza Prefrontal/ultraestructura , Ratas , Ratas Sprague-Dawley
12.
Behav Brain Res ; 171(1): 127-33, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16687181

RESUMEN

We have recently shown a significant role of dopamine D(1) receptors in recognition and temporal order memory retrieval for objects in rodents [Hotte M, Naudon L, Jay TM. Modulation of recognition and temporal order memory retrieval by dopamine D(1) receptor in rats. Neurobiol Learn Mem 2005;84:85-92]. The present study investigates the signal transduction pathways underlying dopamine D(1) receptor modulation of retrieval performance in these memory tasks at different delays. We analyzed the level of phosphorylation of both CREB (cAMP response element binding protein) and DARPP-32 (dopamine and cAMP-regulated phosphoprotein, 32 kDa) in (1) the prefrontal cortex of rats that had performed the object recognition task, (2) the prefrontal and perirhinal cortices of rats that had performed the temporal order memory task for objects. For comparison, we explored the phosphorylation state of CREB and DARPP-32 in the prefrontal cortex, nucleus accumbens and hippocampus of rats having performed badly on the delayed spatial win-shift task after D(1) blockade. The improvement in recognition and temporal order memory performance at a 4h-delay was associated with an increased phosphorylation of both CREB and DARPP-32 in the prefrontal cortex of rats treated with the D(1) agonist SKF 81297. By contrast, the significant impairment of delayed spatial memory retrieval after administration of the selective D(1) antagonist SCH 23390 was associated with decreased phosphorylation of CREB and DARPP-32 in the prefrontal cortex. These results provide insight into molecular mechanisms involved in D(1) receptor-dependent modulation of short- versus long-term memory in prefrontal cortex where DARPP-32 in synergy with CREB may represent a pivotal role.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Recuerdo Mental/fisiología , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/fisiología , Transducción de Señal/fisiología
13.
Epilepsy Res ; 65(1-2): 41-51, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15979855

RESUMEN

GABAergic synaptic transmission plays an important role in the patterning of epileptiform activity. We have previously shown that global loss of GABA(B) receptor function due to transgenic deletion of the GABA(B1) receptor subunit exacerbates epileptiform activity induced by pharmacological manipulations in hippocampal slices. Here we show that a similar hyperexcitable phenotype is observed in hippocampal slices prepared from a transgenic mouse expressing a GABA(B2) receptor subunit lacking its C terminal tail (the DeltaGB2-Ct mouse); a molecular manipulation that also produces complete loss of GABA(B) receptor function. Thus, epileptiform bursts that are sensitive to NMDA receptor antagonists (induced by either the GABA(A) receptor antagonist bicuculline (10muM) or removal of extracellular Mg(2+)) were significantly longer in duration in DeltaGB2-Ct slices relative to WT slices. We now extend these observations to demonstrate that a stimulus train induced bursting (STIB) protocol also evokes significantly longer bicuculline sensitive bursts of activity in DeltaGB2-Ct slices compared to WT. Furthermore, synchronous GABA(A) receptor-mediated potentials recorded in the presence of the potassium channel blocker 4-aminopyridine (4-AP, 100muM) and the ionotropic glutamate receptor antagonists NBQX (20muM) and D-AP5 (50muM) were significantly prolonged in duration in DeltaGB2-Ct versus WT slices. These data suggest that the loss of GABA(B) receptor function in DeltaGB2-Ct hippocampal slices promotes depolarising GABA(A) receptor-mediated events, which in turn, leads to the generation of ictal-like events, which may contribute to the epilepsy phenotype observed in vivo.


Asunto(s)
Epilepsia/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Receptores de GABA-B/metabolismo , 4-Aminopiridina/farmacología , Animales , Bicuculina/farmacología , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Epilepsia/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Antagonistas del GABA/farmacología , Eliminación de Gen , Técnicas In Vitro , Magnesio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Ácidos Fosfínicos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Propanolaminas/farmacología , Células Piramidales , Compuestos de Quinolinio/farmacología , Receptores de GABA-B/química , Receptores de GABA-B/deficiencia , Factores de Tiempo , Valina/análogos & derivados , Valina/farmacología
14.
Neuropharmacology ; 43(2): 141-6, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12213268

RESUMEN

The hippocampus is well known for its susceptibility to epileptic seizures, in part because of its neuronal architecture that facilitates synchronization. Although synaptic networks are important for the genesis and spread of epileptiform activity, synchronization of neuronal activity can occur when action potential-dependent chemical synaptic transmission is absent. In particular, it is possible to induce epileptiform activity by perfusing hippocampal slices with a low-Ca(2+)/high-K(+) mediums. Using extracellular recording in area CA1 we have characterized the effects of metabotropic glutamate receptor (mGluR) activation on this non-synaptic bursting activity. Under control conditions, bursting occurred at intervals of 14-86 s with each burst comprising a long (up to 44 s) negative-going field potential of 2 to 13 mV superimposed upon which was sustained firing of population spikes. Activation of group I mGluRs by (S)-3,5-dihydroxyphenylglycine (DHPG) (25 microM) caused a dramatic increase in burst frequency (up to five-fold), which was accompanied by a decrease in the duration and amplitude of bursts. The selective mGluR(1) antagonist 2-methyl-4-carboxyphenylglycine (LY367385) and the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) both restricted the increase in burst frequency induced by DHPG. However, only LY367385 inhibited the decrease in burst duration and amplitude. Combined application of both antagonists prevented all DHPG-induced changes in bursting activity. These data provide evidence for a role of both mGluR(1) and mGluR(5) subtypes in changing the frequency of non-synaptic bursting, with mGluR(1) alone causing alterations in burst duration and amplitude. These effects are likely to contribute to the group I mGluR-induced changes in synaptic epileptic activity that are already well documented.


Asunto(s)
Potenciales de Acción/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Animales , Epilepsia/fisiopatología , Femenino , Técnicas In Vitro , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...