Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38056684

RESUMEN

Microplastics (MP) are vectors for other environmental contaminants, such as metals, being a considerable problem, especially in the aquatic ecosystem. To investigate the combined effects of MP (high density polyethylene) with lead (Pb), we exposed the mangrove fiddler crab Minuca vocator to Pb (50 mg L-1), and MP (25 mg L-1) alone and in mixture, for 5 days. We aimed to determine Pb and MP bioaccumulation, as well as physiological (oxygen consumption and hemolymph osmolality) and biochemical (superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation) traits effects. Co-exposure of MP and Pb significantly increased the bioaccumulation of Pb, but reduced MP tissue accumulation. Regarding the physiological traits, increasing osmolality and oxygen consumption rates compared to the control were observed, particularly in the combined Pb and MP exposure. As to biochemical traits, the combination of Pb and MP induced the most significant responses in the enzymatic profile antioxidant enzyme activity. The catalase (CAT), glutathione peroxidase (GPx), and dismutase superoxide (SOD) decreased compared to individual exposure effects; the combination of MP and Pb had a synergistic effect on promoting lipid peroxidation (LPO). The co-exposure of MP and Pb acted synergistically when compared to the effects of the isolated compounds. Due to the increasing MP contamination in mangroves, more severe physiological and biochemical effects can be expected on mangrove crabs exposed to metal contamination.


Asunto(s)
Braquiuros , Plásticos , Animales , Catalasa/metabolismo , Microplásticos , Plomo/toxicidad , Estrés Oxidativo , Ecosistema , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo
2.
Zool Stud ; 62: e45, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965297

RESUMEN

We redescribe a species of fiddler crab, Minuca panema (Coelho, 1972), from the Atlantic coast of South America. It is closely related to M. mordax (Smith, 1870), and until now, the taxon has been considered to be synonymous with another closely related species Minuca burgersi (Holthuis, 1967). However, we found that two clades of M. burgersi sensu lato were restricted to the Caribbean Basin. This distribution differs from than that of M. panema, which occurs primarily along the eastern coast of South America, ranging from the island of Trinidad to Praia da Armação, Santa Catarina, Brazil. Based on our field studies, the geographical boundary between M. burgersi sensu stricto and M. panema is the Tobago Basin, north of Trinidad. Since the two species diverged only 3 to 4 million years ago, as dated from the phylogeny of the genus Minuca Bott 1954, there are few reliable morphological features that can be used to distinguish them clearly. In live crabs, there is a striking difference in coloration between the cherryred South American M. panema and the rusty-red Caribbean M. burgersi sensu lato. In males, the pattern of tubercles on the inner surface of the major cheliped varies between the two species. In females, the vulva is slightly larger in M. burgersi sensu stricto. Ocean tides and currents together with siltation owing to freshwater outflow from the Amazon and Orinoco rivers most likely have driven the divergence of these species. In the Caribbean, small tidal amplitudes have minimized long-distance gene flow in M. burgersi sensu stricto from isolated insular lagoons. In contrast, large tidal amplitudes and exposed habitats on riverbanks along the eastern Atlantic coast of South America have enabled long-distance dispersal in M. panema. DNA analysis reveals that haplotypes of cytochrome c oxidase subunit 1 are not shared between the species. Since natural selection and/or genetic drift have yet to produce extensive morphological divergences between M. panema and M. burgersi sensu stricto, we speculate that changes in the genes regulating mitochondrial DNA functions have led to speciation at the molecular level. According to the mitonuclear compatibility concept, we propose that mitochondrial DNA may be at the forefront of speciation events and that co-evolved mitonuclear interactions are responsible for some of the earliest genetic incompatibilities arising among isolated populations.

3.
Mar Pollut Bull ; 179: 113674, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489093

RESUMEN

To comprehend mangrove crab responses to predicted global climate changes, we assessed submersion and desiccation survival durations and salinity tolerances and upper thermal limits in fiddler crabs from Isla del Carmen, Yucatán Peninsula. Based on their tolerances of extreme ambient conditions, we also calculated safety margins using abiotic monitoring data. The two most terrestrial species, Minuca rapax and Leptuca panacea, exhibited submersion tolerances of from 22 to 40 h, and desiccation tolerances of from 30 to 55 h; LC50's were ≈45‰S and UT50's were ≈40 °C. The two least terrestrial species, M. vocator and L. speciosa, were less tolerant of all experimental challenges, showing submersion and desiccation tolerances of <6 h, and LC50's of 36‰S and UT50's of 38 °C. While these fiddler crabs inhabit niches closer to their salinity and desiccation/submersion tolerances than to their temperature limits, all are clearly vulnerable to the multiple stressors that accompany anticipated global climate change.


Asunto(s)
Braquiuros , Animales , Braquiuros/fisiología , Cambio Climático , Salinidad , Temperatura
4.
Genomics ; 113(1 Pt 2): 565-572, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980522

RESUMEN

Minuca minax is a semi-terrestrial crustacean that commonly lives in low salinity, riverine habitats along the shores of the eastern United States. This study reports, for the first time, the complete mitochondrial genome of M. minax. The AT-rich mitochondrial genome of M. minax is 15,937 bp in length and comprised of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. A single 737 bp long intergenic space is assumed to be the D-loop. Most of the PCGs and tRNA genes are encoded in the L-strand. The gene order observed in the mitochondrial genome of M. minax is new although almost identical to that reported in confamiliar species. In all other confamiliar species to which M. minax is compared, the positions of the trnQ gene and the trnI gene are switched. KA/KS ratios calculated for all mitochondrial PCGs show values of <1, indicating that these PCGs are evolving under purifying selection. A maximum likelihood phylogenetic analysis (concatenated PCGs [n = 13], 15 species) supports the monophyly of the subfamilies Ocypodinae and Gelaminidae. Mitochondrial PCGs have enough phylogenetic information to reveal relationships supporting higher taxonomic levels within this family. The knowledge of a complete mitochondrial genome from the red-jointed brackish-water fiddler crab M. minax contributes to the better understanding of meta-population connectivity and the mechanisms involved in the adaptation of marine organisms to near-limnic conditions.


Asunto(s)
Braquiuros/genética , Genoma Mitocondrial , Filogenia , Selección Genética , Animales , Braquiuros/clasificación , Evolución Molecular , Sistemas de Lectura Abierta , ARN Ribosómico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA