Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt A): 1165-1175, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39284271

RESUMEN

CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.

2.
Molecules ; 29(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675710

RESUMEN

Carbon nitride (C3N4) has gained considerable attention and has been regarded as an ideal candidate for photocatalytic hydrogen evolution. However, its photocatalytic efficiency is still unsatisfactory due to the rapid recombination rate of photo-generated carriers and restricted surface area with few active sites. Herein, we successfully synthesized a single-atom Pt cocatalyst-loaded photocatalyst by utilizing the anchoring effect of carbon dots (CDs) on C3N4. The introduction of CDs onto the porous C3N4 matrix can greatly enhance the specific surface area of C3N4 to provide more surface-active sites, increase light absorption capabilities, as well as improve the charge separation efficiency. Notably, the functional groups of CDs can efficiently anchor the single-atom Pt, thus improving the atomic utilization efficiency of Pt cocatalysts. A strong interaction is formed via the connection of Pt-N bonds, which enhances the efficiency of photogenerated electron separation. This unique structure remarkably improves its H2 evolution performance under visible light irradiation with a rate of 15.09 mmol h-1 g-1. This work provides a new approach to constructing efficient photocatalysts by using CDs for sustainable hydrogen generation, offering a practical approach to utilizing solar energy for clean fuel production.

3.
Angew Chem Int Ed Engl ; 62(52): e202314933, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37955333

RESUMEN

Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3 C and further into Mn-N2 C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0 -N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8 -N3 C and Mn+3.2 -N2 C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s-1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.

4.
Angew Chem Int Ed Engl ; 62(39): e202306640, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37312604

RESUMEN

Benzylamine electrooxidation reaction (BAOR) is a promising route to produce value-added, easy-separated benzonitrile, and effectively hoist H2 production. However, achieving excellent performance in low alkaline medium is a huge challenge. The performance is intimately correlated with effective coupling of HER and BAOR, which can be achieved by manipulating the d-electron structure of catalyst to regulate the active species from water. Herein, we constructed a biphasic Mo0.8 Ni0.2 N-Ni3 N heterojunction for enhanced bifunctional performance toward HER coupled with BAOR by customizing the d-band centers. Experimental and theoretical calculations indicate that charge transfer in the heterojunction causes the upshift of the d-band centers, which one side facilitates to decrease water activation energy and optimize H* adsorption on Mo0.8 Ni0.2 N for promoting HER activity, the other side favors to more easily produce and adsorb OH* from water for forming NiOOH on Ni3 N and optimizing adsorption energy of benzylamine, thus catalyzing BAOR effectively. Accordingly, it shows an industrial current density of 220 mA cm-2 at 1.59 V and high Faradaic efficiencies (>99 %) for H2 production and converting benzylamine to benzonitrile in 0.1 M KOH/0.5 M Na2 SO4 . This work guides the design of excellent bifunctional electrocatalysts for the scalable production of green hydrogen and value-added products.

6.
ACS Nano ; 16(10): 17139-17148, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130105

RESUMEN

Although Zn-Ni/air hybrid batteries exhibit improved energy efficiency, power density, and stability compared with Zn-air batteries, they still cannot satisfy the high requirements of commercialization. Herein, the Cu+/Cu2+ redox pair generated from a copper collector has been introduced to construct the hybrid battery system by combining Zn-air and Zn-Cu/Zn-Ni, in which CuXO@NiFe-LDH and Co-N-C dodecahedrons are respectively adopted as oxygen evolution (OER) and oxygen reduction (ORR) electrodes. For fabricating CuXO@NiFe-LDH, the Cu foam collector is oxidized to in situ form 1D CuXO nanoneedle arrays, which could generate the Cu+/Cu2+ redox pair to enhance battery efficiency by providing an extra charging-discharging voltage plateau to reduce the charging voltage and increase the discharge voltage. Then, the 2D NiFe hydrotalcite nanosheets grow on the nanoneedle arrays to obtain 3D interdigital structures, facilitating the intimate contact of the ORR/OER electrode and electrolyte by providing a multichannel structure. Thus, the battery system could endow a high energy efficiency (79.6% at 10 mA cm-2), an outstanding energy density (940 Wh kg-1), and an ultralong lifetime (500 h). Significantly, it could stably operate under harsh environments, such as oxygen-free and any humidity. In situ X-ray diffraction (XRD) combined with ex situ X-ray photoelectron spectroscopy (XPS) analyses demonstrate the reversible process of Cu-O-Cu ↔ Cu-O and Ni-O ↔ Ni-O-O-H during the charging/discharging, which are responsible for the enhanced efficiency and lifetime of battery.

7.
Angew Chem Int Ed Engl ; 61(40): e202211098, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993239

RESUMEN

The emerging star of single atomic site (SAS) catalyst has been regarded as the most promising Pt-substituted electrocatalyst for oxygen reduction reaction (ORR) in anion-exchange membrane fuel cells (AEMFCs). However, the metal loading in SAS directly affects the whole device performance. Herein, we report a dual nitrogen source coordinated strategy to realize high dense Cu-N4 SAS with a metal loading of 5.61 wt% supported on 3D N-doped carbon nanotubes/graphene structure wherein simultaneously performs superior ORR activity and stability in alkaline media. When applied in H2 /O2 AEMFC, it could reach an open-circuit voltage of 0.90 V and a peak power density of 324 mW cm-2 . Operando synchrotron radiation analyses identify the reconstruction from initial Cu-N4 to Cu-N4 /Cu-nanoclusters (NC) and the subsequent Cu-N3 /Cu-NC under working conditions, which gradually regulate the d-band center of central metal and balance the Gibbs free energy of *OOH and *O intermediates, benefiting to ORR activity.

8.
Nat Commun ; 13(1): 3125, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668075

RESUMEN

Paired electroreduction and electrooxidation of organics with water as a feedstock to produce value-added chemicals is meaningful. A comprehensive understanding of reaction mechanism is critical for the catalyst design and relative area development. Here, we have systematically studied the mechanism of the paired electroreduction and electrooxidation of organics on Fe-Mo-based phosphide heterojunctions. It is shown that active H* species for organic electroreduction originate from water. As for organic electrooxidation, among various oxygen species (OH*, OOH*, and O*), OH* free radicals derived from the first step of water dissociation are identified as active species. Furthermore, explicit reaction pathways and their paired advantages are proposed based on theoretical calculations. The paired electrolyzer powered by a solar cell shows a low voltage of 1.594 V at 100 mA cm-2, faradaic efficiency of ≥99%, and remarkable cycle stability. This work provides a guide for sustainable synthesis of various value-added chemicals via paired electrocatalysis.

9.
J Hazard Mater ; 430: 128501, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739681

RESUMEN

The removal of the pollutants from the environment is the need of the environmental protection. ZIF-8 is promising adsorbents, and the construction of ZIF-8 assembly is essential to boost its performance. Here, we showed the easy synthesis of two-dimensional (2D) assembly built by ZIF-8 particles (2D A-ZIF-8) for the high-efficient capture of the iodine (I2) and dyes. The assembly was synthesized by the controllable reaction of 2-methylimidazole (2-MIM) with 2D Zn-glycerol (Zn-GL) precursor. Time-dependent experiments showed the predominant replacement of GL at outer boundary and then basic plane of the precursor by 2-MIM. The assembly can be synthesized with high output and combined the advantage of large accessible surface of 2D sheets, the plentiful pores of ZIF-8 and enhanced stability of assembly, endowing the large potential as adsorbent. The high adsorption capacity of I2 (200 wt%) was achieved on A-ZIF-8, while it is about 128 wt% on traditional dodecahedronal ZIF-8. The assembly also showed the excellent adsorption capacity for methyl orange (MO) (46.3 mg g-1) and methylene blue (MB) (46.5 mg g-1) at a concentration of 50 mg L-1. It can be easily separated for reuse benefited from the large size and enhanced stability of assembly.

10.
Angew Chem Int Ed Engl ; 61(12): e202116233, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-34984764

RESUMEN

A proton exchange membrane water electrolyzer (PEMWE) in acidic medium is a hopeful scenario for hydrogen production using renewable energy, but the grand challenge lies in substituting noble-metal catalysts. Herein, a robust electrocatalyst of V-CoP2 porous nanowires arranged on a carbon cloth is successfully fabricated by incorporating vanadium into the CoP2 lattice. Structural characterizations and theoretical analysis indicate that lattice expansion of CoP2 caused by V incorporation results in the upshift of the d-band center, which is conducive to hydrogen adsorption for boosting the hydrogen evolution reaction (HER). Besides, V promotes surface reconstruction to generate a thicker Co3 O4 layer with an oxygen vacancy that enhances acid-corrosion resistance and optimizes the adsorption of water and oxygen-containing species, thus improving activity and stability toward the oxygen evolution reaction (OER). Accordingly, it presents a superior acidic overall water splitting activity (1.47 V@10 mA cm-2 ) to Pt-C/CC||RuO2 /CC (1.59 V@10 mA cm-2 ), and remarkable stability. This work proposes a new route to design efficient non-noble metal electrocatalysts for PEMWE.

11.
Angew Chem Int Ed Engl ; 60(25): 14005-14012, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33786969

RESUMEN

Dual-metal single-atom catalysts exhibit superior performance for oxygen reduction reaction (ORR), however, the synergistic catalytic mechanism is not deeply understood. Herein, we report a dual-metal single-atom catalyst consisted of Cu-N4 and Zn-N4 on the N-doped carbon support (Cu/Zn-NC). It exhibits high-efficiency ORR activity with an Eonset of 0.98 V and an E1/2 of 0.83 V, excellent stability (no degradation after 10 000 cycles), surpassing state-of-the-art Pt/C and great mass of Pt-free single atom catalysts. Operando XANES demonstrates that the Cu-N4 as active center experiences the change from atomic dispersion to cluster with the cooperation of Zn-N4 during ORR process, and then turns to single atom state again after reaction. DFT calculation further indicates that the adjustment effect of Zn on the d-orbital electron distribution of Cu could benefit to the stretch and cleavage of O-O on Cu active center, speeding up the process of rate determining step of OOH*.

12.
Sci Bull (Beijing) ; 66(3): 275-283, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654333

RESUMEN

Efficient charge separation and rapid interfacial reaction kinetics are crucial factors that determine the efficiency of photocatalytic hydrogen evolution. Herein, a fascinating 2D heterojunction photocatalyst with superior photocatalytic hydrogen evolution performance - holey C3N4 nanosheets nested with TiO2 nanocrystals (denoted as HCN/TiO2) - is designed and fabricated via an in situ exfoliation and conversion strategy. The HCN/TiO2 is found to exhibit an ultrathin 2D heteroarchitecture with intimate interfacial contact, highly porous structures and ultrasmall TiO2 nanocrystals, leading to drastically improved charge carrier separation, maximized active sites and the promotion of mass transport for photocatalysis. Consequently, the HCN/TiO2 delivers an impressive hydrogen production rate of 282.3 µmol h-1 per 10 mg under AM 1.5 illumination and an apparent quantum efficiency of 13.4% at a wavelength of 420 nm due to the synergetic enhancement of surface reactions and charge separation. The present work provides a promising strategy for developing high-performance 2D heterojunctions for clean energy applications.

13.
Angew Chem Int Ed Engl ; 60(12): 6673-6681, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33331671

RESUMEN

Herein, we present a new strategy for the synthesis of 2D porous MoP/Mo2 N heterojunction nanosheets based on the pyrolysis of 2D [PMo12 O40 ]3- -melamine (PMo12 -MA) nanosheet precursor from a polyethylene glycol (PEG)-mediated assembly route. The heterostructure nanosheets are ca. 20 nm thick and have plentiful pores (<5 nm). These structure features offer advantages to promote the HER activity, including the favorable water dissociation kinetics around heterojunction as confirmed by theoretical calculations, large accessible surface of 2D nanosheets, and enhanced mass-transport ability by pores. Consequently, the 2D porous MoP/Mo2 N heterojunction nanosheets exhibit excellent HER activity with low overpotentials of 89, 91 and 89 mV to achieve a current density of 10 mA cm-2 in alkaline, neutral and acidic electrolytes, respectively. The HER performance is superior to the commercial Pt/C at a current density >55 mA cm-2 in neutral medium and >190 mA cm-2 in alkaline medium.

14.
Angew Chem Int Ed Engl ; 60(9): 4815-4822, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33141452

RESUMEN

Actiniae-like carbon nitride (ACN) bundles were synthesized by the pyrolysis of an asymmetric supramolecular precursor prepared from L-arginine (L-Arg) and melamine. ACN has adjustable band gaps (2.25 eV-2.75 eV) and hollow microtubes with ultrathin pore walls, which enrich reaction sites, improve visible-light absorption and enhance charge separation. In the presence of phenylcarbinol, ACN exhibited excellent water-splitting ability (95.3 µmol h-1 ) and in the meanwhile phenylcarbinol was selectively oxidized to benzaldehyde (conversion of 90.9 %, selectivity of 99.7 %) under solar irradiation. For the concurrent reactions, 2 D isotope labeling, separation, and detection were conducted to confirm that the proton source of released hydrogen is water. The mechanism of water splitting and phenylcarbinol oxidation was also investigated.

15.
ACS Appl Mater Interfaces ; 12(44): 49596-49606, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089984

RESUMEN

Molybdenum phosphide is one of the most potential electrocatalysts for the hydrogen evolution reaction (HER), whereas it is still challenging to achieve an efficient molybdenum phosphide-based catalyst that performs well over a wide pH range. Herein, a porous nanoplate composed of small MoP flakes confined in thin N, P, S-triple-doped carbon (MoP@NPSC) was prepared by the assembly of phosphomolybdic acid (H3PMo12O40·nH2O, {PMo12}) and egg white, followed by phosphorization. Given its small size (ca. 1 nm) in favor of deriving small particles and the oxygen-rich surface with strong coordination ability, the {PMo12} cluster was selected to combine with egg white to obtain a lamellar hybrid precursor via a hydrogen bond. Through controllable phosphating, a nanoplate organized by interconnected MoP particles was generated, accompanied by the in situ formation of the N, P, S-doped carbon thin layer and pores from the pyrolysis of egg white. The plentiful pores, thin carbon coating, and multielement doping bring about promoted electrolyte/bubble diffusion, enhanced conductivity and stability, and lowered adsorption energy of hydrogen/hydroxyl, respectively. All of the above merits endow MoP@NPSC with prominent activity with low overpotentials of 50, 76, and 71 mV at 10 mA cm-2 toward the HER in alkaline, neutral, and acid media, respectively, and nearly no attenuation after 40 h of testing. Especially, compared with commercial Pt/C, MoP@NPSC exhibits similar low onset potential and even better at large current density in 1 M KOH. The electrolyzer equipped with the MoP@NPSC cathode and the NiFe-LDH anode requires only 1.52 V to deliver 10 mA cm-2 and can be powered by a solar cell (1.524 V) charged by sunlight.

16.
Dalton Trans ; 49(41): 14665-14672, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33063805

RESUMEN

The low surface area, poor electrical conductivity, and rapid electron-hole recombination in bulk C3N4 limit its photocatalytic activity, which makes it challenging to improve the performance of bulk C3N4. Herein, an effective strategy is proposed to fabricate Co3O4/C3N4 heterojunctions (Co3O4 nanoparticles grown on C3N4 nanosheets), where bulk C3N4 is exfoliated to thin nanosheets. The bulk C3N4 precursor was synthesized with the hydrothermal treatment of melamine solution, and Co2+ ions were then inserted into the interlayer of the precursor through a vacuum-assisted intercalation process. Subsequently, the precursor was exfoliated to C3N4 nanosheets, and 15 nm Co3O4 nanoparticles were simultaneously formed using in situ thermal polycondensation. The Brunauer-Emmett-Teller (BET) specific surface area of the prepared heterojunction was 21 times higher than that of bulk C3N4, and thus more active sites were exposed on the surface of the heterostructure. Co3O4 nanoparticles contained oxygen vacancies, and the type-II transfer mechanism between these nanoparticles and C3N4 could be used to effectively separate photogenic carriers and improve the electron mobility. As expected, the heterostructure exhibited an excellent photocatalyzed degradation rate of 99.5% for methylene blue within 30 min (10 mg catalyst, wavelength >420 nm) under visible light irradiation, which was nearly three times higher than that of bulk C3N4. Electron paramagnetic resonance (EPR) analysis indicated that ˙O2- was the main reactive oxidizing species during the degradation process.

17.
Adv Mater ; 32(33): e2003082, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32643285

RESUMEN

Establishing highly effective charge transfer channels in carbon nitride (C3 N4 ) for enhancing its photocatalytic activity is still a challenging issue. Herein, for the first time, the engineering of C3 N4 layers with single-atom Cu bonded with compositional N (CuNx ) is demonstrated to address this challenge. The CuNx is formed by intercalation of chlorophyll sodium copper salt into a melamine-based supramolecular precursor followed by controlled pyrolysis. Two groups of CuNx are identified: in one group each of Cu atoms is bonded with three in-plane N atoms, while in the other group each of Cu atoms is bonded with four N atoms of two neighboring C3 N4 layers, thus forming both in-plane and interlayer charge transfer channels. Importantly, ultrafast spectroscopy has further proved that CuNx can greatly improve in-plane and interlayer separation/transfer of charge carriers and in turn boost the photocatalytic efficiency. Consequently, the catalyst exhibits a superior visible-light photocatalytic hydrogen production rate (≈212 µmol h-1 /0.02 g catalyst), 30 times higher than that of bulk C3 N4 . Moreover, it leads to an outstanding conversion rate (92.3%) and selectivity (99.9%) for the oxidation of benzene under visible light.

18.
Water Res ; 179: 115882, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32402862

RESUMEN

Novel magnetic Ag@RF@Fe3O4 core-satellite (MCS) nanocomposites were prepared through in situ photoreduction upon bridging Fe(III) and Ag+ via hydroxyl groups in resorcinol formaldehyde (RF) resin by virtue of the coordination effect. The catalytic activity of MCS nanocomposites was evaluated based on catalytic 4-nitrophenol (4-NP) reduction with NaBH4 as the reducing agent. It was noteworthy that the MCS-3 was beneficial to obtain a superior reaction rate constant of 2.27 min-1 and a TOF up to 72.7 h-1. Moreover, the MCS could be easily recovered by applying an external magnetic field and was reused for five times without significantly decrease in catalytic activity. Kinetic and thermodynamic study revealed that catalytic 4-NP reduction using MCS nanocatalysts obeyed the Langmuir-Hinshelwood mechanism and was controlled by the diffusion rate of substrates. Overall, the immobilization of ultra-fine Ag nanoparticles and the extremely negative potentials around MCS nanocomposites, which were effective for the diffusion of reactants, synergistically accelerated the catalytic reduction reactions.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Catálisis , Compuestos Férricos , Fenómenos Magnéticos , Nitrofenoles , Oxidación-Reducción , Plata
19.
Adv Mater ; 32(17): e2000455, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32173914

RESUMEN

Simultaneous highly efficient production of hydrogen and conversion of biomass into value-added products is meaningful but challenging. Herein, a porous nanospindle composed of carbon-encapsulated MoO2 -FeP heterojunction (MoO2 -FeP@C) is proposed as a robust bifunctional electrocatalyst for hydrogen evolution reaction (HER) and biomass electrooxidation reaction (BEOR). X-ray photoelectron spectroscopy analysis and theoretical calculations confirm the electron transfer from MoO2 to FeP at the interfaces, where electron accumulation on FeP favors the optimization of H2 O and H* absorption energies for HER, whereas hole accumulation on MoO2 is responsible for improving the BEOR activity. Thanks to its interfacial electronic structure, MoO2 -FeP@C exhibits excellent HER activity with an overpotential of 103 mV at 10 mA cm-2 and a Tafel slope of 48 mV dec-1 . Meanwhile, when 5-hydroxymethylfurfural is chosen as the biomass for BEOR, the conversion is almost 100%, and 2,5-furandicarboxylic acid (FDCA) is obtained with the selectivity of 98.6%. The electrolyzer employing MoO2 -FeP@C for cathodic H2 and anodic FDCA production requires only a low voltage of 1.486 V at 10 mA cm-2 and can be powered by a solar cell (output voltage: 1.45 V). Additionally, other BEORs coupled with HER catalyzed by MoO2 -FeP@C also have excellent catalytic performance, implying their good versatility.

20.
J Colloid Interface Sci ; 572: 22-30, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32222600

RESUMEN

Structural design, doping, and construction of heterojunctions are effective strategies for producing highly efficient photocatalytic materials. Herein, N-doped TiO2 was formed on hexagonal C3N4 tube through in-situ hydrolysis of a Ti source on a supramolecular precursor, followed by thermal treatment. As a result, a double-shell microtube, C3N4@TiO2 heterostructure was fabricated. It was worth noting that the supramolecular precursor was prepared from melamine and cyanuric acid, which not only served as a template for the double-shell tubular structure, but also provided nitrogen for the doping of TiO2. The photocatalytic efficiency of C3N4@TiO2 was investigated by conducting hydrogen production experiments. The hydrogen production rate of C3N4@TiO2 was measured to be 10.1 mmol h-1 g-1, which is 4 times and 15 times that of C3N4 and TiO2, respectively. The improved photocatalytic activity of C3N4@TiO2 can be ascribed to (1) the tubular structure that provides a large number of reaction sites and enhances mass transport, (2) the heterojunction that is beneficial to charge separation, and (3) doping of TiO2 with nitrogen which extends its optical absorption range to visible light. This work demonstrates a facile method for synthesizing a highly efficient photocatalyst towards hydrogen evolution by modifying its structure and chemical composition as well as forming a heterojunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA