Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Plant Cell Rep ; 43(6): 140, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740586

RESUMEN

KEY MESSAGE: The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Tolerancia a la Sal , Factores de Transcripción , Gossypium/genética , Gossypium/fisiología , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Filogenia , Sintenía/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
2.
Curr Issues Mol Biol ; 46(5): 4004-4020, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785515

RESUMEN

Alternative splicing has been shown to participate in tumor progression, including hepatocellular carcinoma. The poor prognosis of patients with HCC calls for molecular classification and biomarker identification to facilitate precision medicine. We performed ssGSEA analysis to quantify the pathway activity of RNA splicing in three HCC cohorts. Kaplan-Meier and Cox methods were used for survival analysis. GO and GSEA were performed to analyze pathway enrichment. We confirmed that RNA splicing is significantly correlated with prognosis, and identified an alternative splicing-associated protein LUC7L3 as a potential HCC prognostic biomarker. Further bioinformatics analysis revealed that high LUC7L3 expression indicated a more progressive HCC subtype and worse clinical features. Cell proliferation-related pathways were enriched in HCC patients with high LUC7L3 expression. Consistently, we proved that LUC7L3 knockdown could significantly inhibit cell proliferation and suppress the activation of associated signaling pathways in vitro. In this research, the relevance between RNA splicing and HCC patient prognosis was outlined. Our newly identified biomarker LUC7L3 could provide stratification for patient survival and recurrence risk, facilitating early medical intervention before recurrence or disease progression.

3.
Sci Data ; 11(1): 477, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724643

RESUMEN

Gossypium purpurascens is a member of the Malvaceae family, holds immense economic significance as a fiber crop worldwide. Abiotic stresses harm cotton crops, reduce yields, and cause economic losses. Generating high-quality reference genomes and large-scale transcriptomic datasets across diverse conditions can offer valuable insights into identifying preferred agronomic traits for crop breeding. The present research used leaf tissues to conduct PacBio Iso-seq and RNA-seq analysis. We carried out an in-depth analysis of DEGs using both correlations with cluster analysis and principal component analysis. Additionally, the study also involved the identification of both lncRNAs and CDS. We have prepared RNA-seq libraries from 75 RNA samples to study the effects of drought, salinity, alkali, and saline-alkali stress, as well as control conditions. A total of 454.06 Gigabytes of transcriptome data were effectively validated through the identification of differentially expressed genes and KEGG and GO analysis. Overwhelmingly, gene expression profiles and full-length transcripts from cotton tissues will aid in understanding the genetic mechanism of abiotic stress tolerance in G. purpurascens.


Asunto(s)
Gossypium , RNA-Seq , Estrés Fisiológico , Transcriptoma , Gossypium/genética , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Salinidad , ARN de Planta/genética , Hojas de la Planta/genética
4.
J Cancer Res Clin Oncol ; 150(5): 276, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796816

RESUMEN

PURPOSE: Colorectal cancer (CRC) refers to high-mortality tumors arising in the colon or rectum with a high rate of recurrence. The involvement of long non-coding RNAs (lncRNAs) contributes to the treatment and prognosis evaluation of CRC, and brings a new direction for the radical cure of patients. To identify the pathological mechanism and regulation of lncRNA LINC01128 (LINC01128) on CRC cells, and analyze its potential prognostic value. METHODS: LINC01128 level in tissue and cell specimens from 122 CRC patients was evaluated by RT-qPCR. The clinical significance and prognostic value of LINC01128 in CRC were analyzed via Kaplan-Meier and Cox analysis. CCK8 and Transwell assays were used to study the function of LINC01128 in vitro. The relationship between LINC01128 and miR-363-3p was confirmed by luciferase reporter gene assay. RESULTS: The overexpression of LINC01128 is associated with TNM stage and lymph node metastasis in CRC patients. Silencing LINC01128 inhibited the proliferation and metastasis of CRC cells. In addition, LINC01128 directly targeted and negatively regulated the miR-363-3p expression, while miR-363-3p inhibitor restored the inhibitory function of LINC01128. CONCLUSION: As an independent prognostic factor of CRC, upregulation of LINC01128 predicts poor prognosis and accelerates tumor deterioration through miR-363-3p.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Regulación hacia Arriba , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ARN Largo no Codificante/genética , MicroARNs/genética , Pronóstico , Masculino , Proliferación Celular/genética , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metástasis Linfática/genética , Anciano
5.
J Affect Disord ; 359: 70-77, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735580

RESUMEN

BACKGROUND: The triglyceride glucose (TyG) index, a novel surrogate indicator for insulin resistance (IR), is believed to be associated with various diseases. However, its connection with cognitive decline remains controversy. METHODS: The PubMed, EMBASE, Cochrane Library, Web of Science, and Medline databases were systematically searched up to October 2023 to assess the association between the TyG index and the risk of cognitive decline. Effect estimates and 95 % confidence intervals (CIs) were calculated using a random-effects model. RESULTS: Our review included 3 cohort studies and 9 case-control/cross-sectional studies with a total of 5,603,350 participants. In comparison to a low TyG index, a higher TyG index was connected to an elevated risk of cognitive decline (RR/HR = 1.14, 95 % CI [1.11, 1.17], P < 0.05; OR = 1.75, 95 % CI [1.34, 2.29], P < 0.05). Furthermore, the dose-response analysis from the case-control/cross-sectional studies revealed a 1.42 times higher risk of cognitive decline per 1 mg/dl increment of the TyG index (OR = 1.42, 95 % CI [1.19, 1.69], P < 0.05). LIMITATIONS: The inclusion of observational studies in the meta-analysis demonstrated a lower hierarchy of evidence compared to randomized controlled trials. Moreover, we incorporated a restricted number of studies and identified significant heterogeneity among them, potentially attributed to the presence of numerous confounding variables. CONCLUSION: TyG index is related to cognitive decline. In view of some of the limitations of this study, further research will be necessary to confirm this relationship.

6.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650035

RESUMEN

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.


Asunto(s)
Asma , Isoflavonas , Linfocitos , Macrófagos , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Células RAW 264.7 , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Inmunidad Innata/efectos de los fármacos , Femenino , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Interleucina-33
7.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256933

RESUMEN

PROTAC is a rapidly developing engineering technology for targeted protein degradation using the ubiquitin-proteasome system, which has promising applications for inflammatory diseases, neurodegenerative diseases, and malignant tumors. This paper gives a brief overview of the development and design principles of PROTAC, with a special focus on PROTAC-based explorations in recent years aimed at achieving controlled protein degradation and improving the bioavailability of PROTAC, as well as TPD technologies that use other pathways such as autophagy and lysosomes to achieve targeted protein degradation.

8.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958377

RESUMEN

Hepatocellular carcinoma (HCC) accounts for over 80% of cases among liver cancer, with high incidence and poor prognosis. Thus, it is of valuable clinical significance for discovery of potential biomarkers and drug targets for HCC. In this study, based on the proteomic profiling data of paired early-stage HCC samples, we found that RNF149 was strikingly upregulated in tumor tissues and correlated with poor prognosis in HCC patients, which was further validated by IHC staining experiments of an independent HCC cohort. Consistently, overexpression of RNF149 significantly promoted cell proliferation, migration, and invasion of HCC cells. We further proved that RNF149 stimulated HCC progression via its E3 ubiquitin ligase activity, and identified DNAJC25 as its new substrate. In addition, bioinformatics analysis showed that high expression of RNF149 was correlated with immunosuppressive tumor microenvironment (TME), indicating its potential role in immune regulation of HCC. These results suggest that RNF149 could exert protumor functions in HCC in dependence of its E3 ubiquitin ligase activity, and might be a potential prognostic marker and therapeutic target for HCC treatment.

9.
Eur Radiol ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964049

RESUMEN

OBJECTIVE: To establish an automated, multitask, MRI-based deep learning system for the detailed evaluation of supraspinatus tendon (SST) injuries. METHODS: According to arthroscopy findings, 3087 patients were divided into normal, degenerative, and tear groups (groups 0-2). Group 2 was further divided into bursal-side, articular-side, intratendinous, and full-thickness tear groups (groups 2.1-2.4), and external validation was performed with 573 patients. Visual geometry group network 16 (VGG16) was used for preliminary image screening. Then, the rotator cuff multitask learning (RC-MTL) model performed multitask classification (classifiers 1-4). A multistage decision model produced the final output. Model performance was evaluated by receiver operating characteristic (ROC) curve analysis and calculation of related parameters. McNemar's test was used to compare the differences in the diagnostic effects between radiologists and the model. The intraclass correlation coefficient (ICC) was used to assess the radiologists' reliability. p < 0.05 indicated statistical significance. RESULTS: In the in-group dataset, the area under the ROC curve (AUC) of VGG16 was 0.92, and the average AUCs of RC-MTL classifiers 1-4 were 0.99, 0.98, 0.97, and 0.97, respectively. The average AUC of the automated multitask deep learning system for groups 0-2.4 was 0.98 and 0.97 in the in-group and out-group datasets, respectively. The ICCs of the radiologists were 0.97-0.99. The automated multitask deep learning system outperformed the radiologists in classifying groups 0-2.4 in both the in-group and out-group datasets (p < 0.001). CONCLUSION: The MRI-based automated multitask deep learning system performed well in diagnosing SST injuries and is comparable to experienced radiologists. CLINICAL RELEVANCE STATEMENT: Our study established an automated multitask deep learning system to evaluate supraspinatus tendon (SST) injuries and further determine the location of SST tears. The model can potentially improve radiologists' diagnostic efficiency, reduce diagnostic variability, and accurately assess SST injuries. KEY POINTS: • A detailed classification of supraspinatus tendon tears can help clinical decision-making. • Deep learning enables the detailed classification of supraspinatus tendon injuries. • The proposed automated multitask deep learning system is comparable to radiologists.

10.
Diabetes Metab Syndr Obes ; 16: 3249-3259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37872973

RESUMEN

Purpose: Subclinical inflammation may be involved in the pathogenesis of diabetic cardiac autonomic neuropathy (DCAN). The purpose of the study is to explore the relationship between novel inflammation biomarkers fibrinogen-albumin ratio (FAR), fibrinogen-prealbumin ratio (FPR), and DCAN in type 2 diabetes mellitus (T2DM). Patients and Methods: A total of 715 T2DM patients were enrolled in this retrospective study, divided into non-DCAN (n=565) and DCAN (n=150) groups by Ewing's test. Serum fibrinogen, albumin, prealbumin, routine inflammatory and other biochemical markers were measured. Results: Patients with versus without DCAN had higher FAR (10.29 ± 4.83 vs 7.22 ± 2.56 g/g, P < 0.001) and FPR (2.19 ± 1.85 vs 1.43 ± 0.93 g/mg, P < 0.001). As FAR and FPR quartiles increased, the incidence of DCAN increased (Quartile 1 vs Quartile 4: 8.4 vs 42.7%, 9.6 vs 39.2%, respectively, P < 0.001), heart rate variability parameters decreased (P < 0.001); the incidence of diabetic nephropathy, retinopathy and peripheral neuropathy tended to be higher and inflammation factors were more active (P < 0.01). FAR (OR, 95% CI: 1.16, 1.08-1.25, P < 0.001) and FPR (OR, 95% CI: 1.22, 1.03-1.44, P = 0.021) were independent determinants of DCAN; the risk of DCAN increased by approximately 65% and 27% with each increase in the standard deviation (SD) of FAR (OR per SD, 95% CI: 1.65, 1.29-2.11, P < 0.001) and FPR (OR per SD, 95% CI: 1.27, 1.04-1.56, P = 0.021). Conclusion: FAR and FPR are independent risk factors and may influence DCAN development through inflammation.

11.
Oncol Rep ; 50(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800629

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 5C, and the cell migration and invasion data shown in Figs. 3C and D and 6B and C were strikingly similar to data that had already appeared in other articles. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 38: 3071­3077, 2017; DOI: 10.3892/or.2017.5956].

12.
Cell Signal ; 112: 110926, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37848099

RESUMEN

As a chronic respiratory disease, asthma is related to airway inflammation and remodeling. Macrophages are regarded as main innate immune cells in the airway that exert various functions like antigen recognition and presentation, phagocytosis, and pathogen clearance, playing a crucial role in the pathogeneses of asthma. Non-coding RNAs (ncRNAs), mainly include microRNA, long non-coding RNA and circular RNA, have been extensively investigated on the regulation of pathological process in asthma. Recent studies have indicated that ncRNA-regulated macrophages affect macrophage polarization, airway inflammation, immune regulation and airway remodeling, which suggests that modulating macrophages by ncRNAs may be a promising strategy for the treatment of asthma. This review summarizes the effect of macrophages in asthma and the regulatory mechanisms of ncRNAs, as well as focuses on the role of ncRNAs-regulated macrophages in asthma, for the development of novel therapeutic strategies in this disease.


Asunto(s)
Asma , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , Asma/genética , Asma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Macrófagos/patología , Inflamación/patología
13.
Cell Biosci ; 13(1): 186, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789469

RESUMEN

BACKGROUND: High-fat diet (HFD) is closely associated with the increased prevalence of inflammatory bowel disease (IBD). Excessive gut microbial metabolite deoxycholic acid (DCA) caused by HFD plays significant roles in eliciting intestinal inflammation, however, the mechanism underlining the induction of inflammatory response by DCA has not been fully elucidated. The purpose of this study was to investigate the role of DCA in the triggering of inflammation via affecting CD4+ T cell differentiation. RESULTS: Murine CD4+T cells were cultured under Th1, Th2 or Th17-polarizing conditions treated with or without different dosage of DCA, and flowcytometry was conducted to detect the effect of DCA on CD4+ T cell differentiation. Alteration of gene expression in CD4+ T cells upon DCA treatment was determined by RNA-sequencing and qRT-PCR. Bioinformatic analysis, cholesterol metabolic profiling, ChIP assay and immuno-fluorescent staining were further applied to explore the DCA-regulated pathway that involved in CD4+T cell differentiation. The results showed that DCA could dose-dependently promote the differentiation of CD4+ T cell into Th17 linage with pathogenic signature. Mechanistically, DCA stimulated the expression of cholesterol biosynthetic enzymes CYP51 and led to the increased generation of endogenous RORγt agonists, including zymosterol and desmosterol, therefore facilitating Th17 differentiation. Up-regulation of CYP51 by DCA was largely mediated via targeting transcription factor SREBP2 and at least partially through bile acid receptor TGR5. In addition, DCA-supplemented diet significantly increased intestinal Th17 cell infiltration and exacerbated TNBS-induced colitis. Administration of cholestyramine to eliminate fecal bile acid obviously alleviated colonic inflammation accompanied by decreased Th17 cells in HFD-fed mice. CONCLUSIONS: Our data establish a link between DCA-induced cholesterol biosynthesis in immune cells and gut inflammation. Modulation of bile acid level or targeting cholesterol metabolic pathway may be potential therapeutic measurements for HFD-related colitis.

14.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629034

RESUMEN

Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.


Asunto(s)
Gossypium , Tolerancia a la Sal , Gossypium/genética , Tolerancia a la Sal/genética , Estrés Salino , Carbono , Perfilación de la Expresión Génica
15.
Nutrients ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375709

RESUMEN

Supplemental n-3 polyunsaturated fatty acids (PUFA) on bone metabolism have yielded inconsistent results. This study aimed to examine the effects of n-3 PUFA supplementation on bone metabolism markers and bone mineral density through a meta-analysis of randomized controlled trials. A systematic literature search was conducted using the PubMed, Web of Science, and EBSCO databases, updated to 1 March 2023. The intervention effects were measured as standard mean differences (SMD) and mean differences (MD). Additionally, n-3 PUFA with the untreated control, placebo control, or lower-dose n-3 PUFA supplements were compared, respectively. Further, 19 randomized controlled trials (RCTs) (22 comparisons, n = 2546) showed that n-3 PUFA supplementation significantly increased blood n-3 PUFA (SMD: 2.612; 95% CI: 1.649 to 3.575). However, no significant effects were found on BMD, CTx-1, NTx-1, BAP, serum calcium, 25(OH)D, PTH, CRP, and IL-6. Subgroup analyses showed significant increases in femoral neck BMD in females (0.01, 95% CI: 0.01 to 0.02), people aged <60 years (0.01, 95% CI: 0.01 to 0.01), and those people in Eastern countries (0.02, 95% CI: 0.02 to 0.03), and for 25(OH)D in people aged ≥60 years (0.43, 95% CI: 0.11 to 0.74), treated with n-3 PUFA only (0.36, 95% CI: 0.06 to 0.66), and in studies lasting ≤6 months (0.29, 95% CI: 0.11 to 0.47). NTx-1 decreased in both genders (-9.66, 95% CI: -15.60 to -3.71), and serum calcium reduction was found in studies lasting >6 months (-0.19, 95% CI: -0.37 to -0.01). The present study demonstrated that n-3 PUFA supplementation might not have a significant effect on bone mineral density or bone metabolism markers, but have some potential benefits for younger postmenopausal subjects in the short term. Therefore, additional high-quality, long-term randomized controlled trials (RCTs) are warranted to fully elucidate the potential benefits of n-3 PUFA supplementation, as well as the combined supplementation of n-3 PUFA, on bone health.


Asunto(s)
Ácidos Grasos Omega-3 , Femenino , Humanos , Adulto , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Densidad Ósea , Calcio/farmacología , Ácidos Grasos Insaturados/farmacología , Suplementos Dietéticos
16.
Food Funct ; 14(7): 3126-3138, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36929898

RESUMEN

The function of skeletal muscles can be markedly hampered by obesity. Ten-eleven translocation 2 (TET2) is an important therapeutic target for ameliorating skeletal muscle dysfunction. Our previous study revealed that punicalagin (PUN) regulated TET2 in obese mice; however, whether PUN can prevent obesity-induced skeletal muscle dysfunction by regulating TET2 remains unclear. In the present study, 40 male C57BL/6J mice were divided into four groups (n = 10 per group): the control (CON) group, the high-fat-diet (HFD, negative control) group, the resveratrol (positive control) group, and the PUN group. The ratio of gastrocnemius weight to body weight (0.0097 ± 0.0016 vs. 0.0080 ± 0.0011), the grip strength (120.04 g ± 11.10 vs. 98.89 g ± 2.79), and the muscle fiber count (314.56 per visual field ± 92.73 vs. 236.44 per visual field ± 50.58) in the PUN group were higher than those in the HFD group. Moreover, the levels of the TET2 protein, 5-hydroxymethylcytosine (5hmC), and 5-formylcytosine (5fC) in skeletal muscles were significantly lower in the HFD group than those in the CON group; these levels increased after PUN treatment. Compared with the HFD group, the phosphorylation level of AMP-activated protein kinase (AMPK) α in the PUN group was higher, which effectively enhanced the stability of the TET2 protein. Besides, the ratio of (succinic acid + fumaric acid)/α-ketoglutarate in the PUN group was lower than that in the HFD group (43.21 ± 12.42 vs. 99.19 ± 37.07), and a lower ratio led to a higher demethylase activity of TET2 in the PUN group than in the HFD group. This study highlights that PUN supplementation protects against obesity-induced impairment of the skeletal muscle function via regulating the protein stability of TET2 and the enzymatic activity of TET2 demethylation.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Taninos Hidrolizables , Músculo Esquelético , Obesidad , Taninos Hidrolizables/administración & dosificación , Taninos Hidrolizables/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/fisiopatología , Dieta Alta en Grasa/efectos adversos , Obesidad/complicaciones , Obesidad/fisiopatología , Obesidad/terapia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Peso Corporal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo
17.
iScience ; 25(10): 105183, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36238898

RESUMEN

Endoplasmic reticulum (ER) homeostasis has been implicated in the pathogenesis of various forms of cancer; however, our understanding of the role of ER quality control mechanisms in tumorigenesis remains incomplete. Here, we show that the SEL1L-HRD1 complex of ER-associated degradation (ERAD) suppresses hepatocyte proliferation and tumorigenesis in mice. Hepatocyte-specific deletion of Sel1L or Hrd1 predisposed mice to diet/chemical-induced tumors. Proteomics screen from SEL1L-deficient livers revealed WNT5A, a tumor suppressor, as an ERAD substrate. Indeed, nascent WNT5A was misfolding prone and degraded by SEL1L-HRD1 ERAD in a quality control capacity. In the absence of ERAD, WNT5A misfolds is largely retained in the ER and forms high-molecular weight aggregates, thereby depicting a loss-of-function effect and attenuating WNT5A-mediated suppression of hepatocyte proliferation. In humans, SEL1L-HRD1 ERAD expression correlated positively with survival time for patients with liver cancer. Overall, our data reveal a key role of SEL1L-HRD1 ERAD in suppressing hepatocyte proliferation and liver cancer.

18.
Front Microbiol ; 13: 952892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187951

RESUMEN

Excessive fructose intake from desserts and beverages may influence bone development among adolescents. The gut microbiota (GM) and energy metabolism play important roles in bone development. In this study, 40 female adolescent rats were randomly assigned to the control group, the fructose group with two concentrations, and the glucose group as the positive control group. After 10 weeks, serum glucose and lipids were detected by means of an automatic analyzer, and the bone microstructure was analyzed by Micro-CT. Then, the GM was determined via 16S rRNA sequencing analysis, and energy metabolism was detected by measuring serum carbohydrate metabolites. At last, bone metabolism markers were measured via ELISA kits. The results showed that excessive fructose intake could increase body weight and influence the glucolipid metabolism of female adolescent rats. Meanwhile, the bone microstructures were impaired with excessive fructose intake. Mechanistically, excessive fructose intake shifted the GM of rats with the decrease of Lachnospiraceae, Ruminococcaceae, and increase of Allobaculum, Lachnospiraceae. Energy metabolism analysis suggested that most metabolites of fructose did not enter the tricarboxylic acid cycle to provide energy for the body's development. Furthermore, serum bone metabolism markers showed that excessive fructose intake could decrease both bone formation and resorption. Our results suggested that excessive fructose intake could inhibit skeletal development in adolescents. One potential mechanism might be that it affected the intestinal microbiota homeostasis in the juvenile body, thus changing the energy metabolism level, and ultimately affecting the bone metabolic balance.

19.
Cell Signal ; 98: 110405, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35835334

RESUMEN

As one of the most important tumor suppressors, the activity of p53 is precisely regulated. However, the mechanism of p53 regulation is still being elucidated and new regulatory molecules for p53 have also been frequently identified. Our previous works revealed that two members of the KRAB zinc-finger protein (KZFP) family Apak and PISA, which are located on human 19q13.12, participated in the regulation of p53 signaling pathway. KZFPs genes are mainly amplified via tandem in situ duplication during evolution, which indicates that similar sequences and functions may be conserved in evolutionarily and physically close KZFPs. Here, we revealed that ZNF383, another member of the KZFPs mapped at 19q13.12, could inhibit p53-mediated apoptosis and the activation of IFN-ß pathway by decreasing the H3K36me2 level at p53's binding sites and the attenuating the binding of p53 to its target genes. We further explored the effect of other KZFPs clustered on 19q13.12 on p53, and found that 85% of these KZFPs exerted p53-repressive activity. Intriguingly, an acidic amino acid-enriched sequence, the SAcL motif in the zinc-finger domains of these KZFPs, was found to be critical for p53 binding. Taken together, our findings revealed the KZFPs cluster located at 19q13.12 not only was involved in p53 regulation but also exhibited different features in the selective regulation of p53 and functional mechanisms, and for the first time, confirmed a motif in KZFPs that mediates the interaction of KZFPs and p53. These results would enrich the knowledge on the role, sequence features, and functional mechanisms of the KZFP family in p53 regulation.


Asunto(s)
Proteína p53 Supresora de Tumor , Dedos de Zinc , Secuencia de Aminoácidos , Humanos , Proteínas Represoras/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Zinc/metabolismo , Dedos de Zinc/fisiología
20.
Biochim Biophys Acta Rev Cancer ; 1877(3): 188731, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483489

RESUMEN

Kruppel-associated box (KRAB) zinc-finger proteins (KRAB-ZFPs) are the largest transcriptional/transcription-regulatory factor family in mammalian cells. The amino-terminal KRAB domain, which recruits other transcription-regulating proteins, and the carboxyl-terminal C2H2 zinc-finger motifs, which bind to specific DNA sequences, are the typical structural characteristics of KRAB-ZFPs. Many KRAB-ZFPs are abnormally expressed in several cancer types and involved in many cancer-related signaling pathways and bioprocesses, including cell proliferation, apoptosis, migration, invasion, and metastasis. In this review, we summarize the protein structure and mechanisms involved in transcriptional regulation, and focus on multiple key signaling pathways regulated by KRAB-ZFPs, including the p53, Wnt/ß-catenin, and NF-κB pathways, highlighting the oncogenic and tumor-suppressive roles of KRAB-ZFPs in different cancers. We also discuss the mechanisms regulating KRAB-ZFP expression. The further elucidation of the oncogenic and tumor-suppressive roles of KRAB-ZFPs and their targeting for multiple synergistic signaling pathways may be valuable for effective cancer therapy.


Asunto(s)
Neoplasias , Dedos de Zinc , Animales , Humanos , Mamíferos/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción/genética , Zinc , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...