Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 26599-26609, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710517

RESUMEN

Ultracold atoms in optical lattices are a flexible and effective platform for quantum precision measurement, and the lifetime of high-band atoms is an essential parameter for the performance of quantum sensors. In this work, we investigate the relationship between the lattice depth and the lifetime of D-band atoms in a triangular optical lattice and show that there is an optimal lattice depth for the maximum lifetime. After loading the Bose-Einstein condensate into D band of optical lattice by shortcut method, we observe the atomic distribution in quasi-momentum space for the different evolution time, and measure the atomic lifetime at D band with different lattice depths. The lifetime is maximized at an optimal lattice depth, where the overlaps between the wave function of D band and other bands (mainly S band) are minimized. Additionally, we discuss the influence of atomic temperature on lifetime. These experimental results are in agreement with our numerical simulations. This work paves the way to improve coherence properties of optical lattices, and contributes to the implications for the development of quantum precision measurement, quantum communication, and quantum computing.

2.
Opt Express ; 30(23): 41437-41446, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366622

RESUMEN

Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first time. The key to realizing this interferometer in two-dimensionally coupled lattice is that we use the shortcut method to construct π/2 pulse. We observe clear Ramsey fringes and analyze the decoherence mechanism of fringes. Further, we design an echo π pulse between S- and D-band, which significantly improves the coherence time. This Ramsey interferometer in the dimensionally coupled lattice has potential applications in the quantum simulations of topological physics, frustrated effects, and motional qubits manipulation.

3.
Ying Yong Sheng Tai Xue Bao ; 33(2): 304-310, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35229502

RESUMEN

Water use efficiency (WUE) of five dominant tree species (Pinus koraiensis, Fraxinus mandshurica, Acer mono, Quercus mongolica, and Tilia amurensis) was estimated using the stable carbon isotope method in a broadleaved Korean pine forest in Changbai Mountains. Leaf carbon (C), nitrogen (N), and phosphorus (P) contents were measured to analyze nutrient utilization of the dominant species. The relationship between WUE and leaf nutrient contents was systematically assessed. WUE was different due to the variations of micrometeorological factors at different locations in the canopy. The four broadleaved tree species showed upper layer > middle layer > lower layer, while P. koraiensis showed upper layer > lower layer > middle layer. WUE of evergreen coniferous P. koraiensis was higher than that of two broadleaved species with diffuse-porous wood (T. amurensis and A. mono) and lower than that of two broadleaved species with ring-porous wood (F. mandshurica and Q. mongolica). The compound-leaved species (F. mandshurica) had the highest WUE. The WUE of new leaves was significantly higher than old leaves in P. koraiensis. The carbon content and C/N of the old and new leaves of evergreen coniferous P. koraiensis were significantly higher than those of the other four broadleaved tree species, while nitrogen content and N/P were significantly lower than those of the four broadleaved tree species. P content of old leaves of P. koraiensis was significantly lower than that of the four broadleaved tree species. P content of new leaves of current year was not significantly different from that of the broadleaved tree species. The WUE of five tree species had a poor correlation with leaf C content, but a positive correlation with leaf N content. The WUE of evergreen coniferous and deciduous broadleaved tree species was correlated with leaf P content but in opposite direction.


Asunto(s)
Pinus , Árboles , China , Bosques , Nutrientes , Hojas de la Planta , República de Corea , Agua
4.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1221-1229, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33899390

RESUMEN

Water use efficiency (WUE) is an objective indicator of plant water use, the research of which is helpful to understand the carbon-water coupling mechanism in terrestrial ecosystems. We investigated WUE of dominant tree species in the succession series of broad-leaved Korean pine forests in Changbai Mountain (middle-aged poplar-birch secondary forest, mature poplar-birch secondary forest, broad-leaved Korean pine forest) by using stable carbon isotope technology. The WUE of three forests under different succession stages decreased in order of broad-leaved Korean pine forest > middle-aged poplar-birch secondary forest > mature poplar-birch secondary forest. In addition, the same tree species had different WUE in different forest stands. The WUE of Populus davidiana and Betula platyphylla in the middle-aged poplar-birch secondary forest was higher than that in mature poplar-birch secondary forest. The WUE of Fraxinus mandshurica in broad-leaved Korean pine forest was much higher than that in middle-aged poplar-birch secondary forest. The WUE of Acer mono and Quercus mongolica in broad-leaved Korean pine forest was higher than that in mature poplar-birch secondary forest. The dominant tree species had different WUE as for wood types which generally presented ring-porous wood species>diffuse-porous wood species. There were different seasonal trends during the growing season among the dominant species in the broad-leaved Korean pine forest. The WUE of Fraxinus mandshurica, Acer mono, Quercus mongolica and Tilia amurensis showed first decreasing and then increasing, while that of Pinus koraiensis was opposite. The WUE of the broad-leaved Korean pine forest was negatively correlated with temperature in the growing season. The different WUE was one of the strategies for dominant species in the broad-leaved Korean pine forest in Changbai Mountains to adapt to the community succession and respond to climate and environmental change.


Asunto(s)
Ecosistema , Pinus , China , Bosques , República de Corea , Árboles , Agua
5.
Tree Physiol ; 41(2): 190-205, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33313912

RESUMEN

Atmospheric nitrogen (N) deposition has been observed to impact plant structure and functional traits in terrestrial ecosystems. Although the effect of N deposition on plant water use has been well-evaluated in laboratories and in experimental forests, the linkages between water and carbon relations under N deposition are unclear. Here, we report on hydraulics, gas exchange and carbon reserves of two broad-leaved tree species (Quercus mongolica and Fraxinus mandshurica) in mature temperate forests after a seven-year experiment with different levels of N addition (control (CK), low (23 kg N ha-1 yr-1), medium (46 kg N ha-1 yr-1) and high (69 kg N ha-1 yr-1)). We investigated variation in hydraulic traits (xylem-specific hydraulic conductivity (Ks), native percentage loss of conductivity (PLC) and leaf water potential), xylem anatomy (vessel diameter and density), gas exchange (maximum net photosynthesis rate and stomatal conductance) and carbon reserves (soluble sugars, starch and total nonstructural carbohydrates (NSC)) with different N addition levels. We found that medium N addition significantly increased Ks and vessel diameter compared to control, but accompanied increasing PLC and decreasing leaf water potential, suggesting that N addition results in a greater hydraulic efficiency and higher risk of embolism. N addition promoted photosynthetic capacity via increasing foliar N concentration but did not change stomatal conductance. In addition, we found increase in foliar soluble sugar concentration and decrease in starch concentration with N addition, and positive correlations between hydraulic traits (vessel diameter and PLC) and soluble sugars. These coupled responses of tree hydraulics and carbon metabolism are consistent with a regulatory role of carbohydrates in maintaining hydraulic integrity. Our study provides an important insight into the relationship of plant water transport and carbon dynamics under increasing N deposition.


Asunto(s)
Nitrógeno , Árboles , Carbono , Ecosistema , Hojas de la Planta , Agua , Xilema
6.
Tree Physiol ; 40(2): 230-244, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860728

RESUMEN

Drought and nitrogen (N) addition have been shown to affect tree hydraulic traits, but few studies have been made on their interactions across species with different wood types or leaf forms. We examined the responses of hydraulic conductance and xylem anatomical traits of Quercus mongolica (ring porous with simple leaves), Fraxinus mandshurica (ring porous with compound leaves) and Tilia amurensis (diffuse porous with simple leaves) to drought, N addition and their interactions. Drought stress decreased current-year xylem-specific conductivity in stems (Ksx) and leaf hydraulic conductance (Kleaf ), but N addition affected Ksx and Kleaf differently among species and watering regimes. These divergent effects were associated with different responses of anatomical traits and leaf forms. Higher mean vessel diameter in stems and lower vessel density in leaves were observed with N addition. The three-way interactive effects of drought, N addition and tree species were significant for most values of anatomical traits. These results were also reflected in large differences in vessel diameter and density among species with different wood types or leaf forms. The two-way interactive effects of drought and N addition were significant on Kleaf and predawn water potential, but not Ksx, indicating that leaves were more sensitive than stems to a combination of drought stress and N addition. Our results provide mechanistic insight into the variable responses of xylem water transport to the interactions of drought and N availability.


Asunto(s)
Sequías , Árboles , Adaptación Psicológica , Hojas de la Planta , Tallos de la Planta , Agua , Xilema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA