Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 290: 105033, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-37879564

RESUMEN

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Asunto(s)
Betaína , Lycium , Animales , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteómica , Carbohidratos , Ácidos Carboxílicos/metabolismo
2.
Int J Biol Macromol ; 258(Pt 2): 128958, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154707

RESUMEN

The level of polysaccharides in the mature Lycium barbarum fruit (LBF) cell wall depends on their metabolism, trafficking, and reassembly within the cell. In this study, we examined the composition, content, and ultrastructure of the cell wall polysaccharides of LBF during maturation, and further analyzed cell wall polysaccharide remodeling using isotope tagging with relative and absolute quantification (iTRAQ)-based proteomics. The results showed that the contents of cellulose and hemicellulose tended to increase in the pre-maturation stage and decrease in the later stage, while pectin level increased before fruit maturing. The differential expression of the 54 proteins involved in the metabolic pathways for glucose, fructose, galactose, galacturonic acid and arabinose was found to be responsible for these alterations. The work provides a biological framework for the reorganization of polysaccharides in the LBF cell wall, and supports the hypothesis that pectic polysaccharide glycosyl donors come from starch, cellulose, hemicellulose and isomorphic pectin.


Asunto(s)
Lycium , Pectinas , Pectinas/análisis , Lycium/química , Frutas/química , Polisacáridos/química , Celulosa/análisis , Pared Celular
3.
Front Oncol ; 13: 1189015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771436

RESUMEN

Over the past few decades, cellular senescence has been identified in cancer patients undergoing chemotherapy and radiotherapy. Senescent cells are generally characterized by permanent cell cycle arrest as a response to endogenous and exogenous stresses. In addition to exiting the cell cycle process, cellular senescence also triggers profound phenotypic changes such as senescence-associated secretory phenotype (SASP), autophagy modulation, or metabolic reprograming. Consequently, cellular senescence is often considered as a tumor-suppressive mechanism that permanently arrests cells at risk of malignant transformation. However, accumulating evidence shows that therapy-induced senescence can promote epithelial-mesenchymal transition and tumorigenesis in neighboring cells, as well as re-entry into the cell cycle and activation of cancer stem cells, thereby promoting cancer cell survival. Therefore, it is particularly important to rapidly eliminate therapy-induced senescent cells in patients with cancer. Here we review the hallmarks of cellular senescence and the relationship between cellular senescence and cancer. We also discuss several pathways to induce senescence in tumor therapy, as well as strategies to eliminate senescent cells after cancer treatment. We believe that exploiting the intersection between cellular senescence and tumor cells is an important means to defeat tumors.

4.
Theor Appl Genet ; 126(7): 1861-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23580089

RESUMEN

The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.


Asunto(s)
Resistencia a la Enfermedad/genética , Genoma de Planta , Repeticiones de Microsatélite , Solanum tuberosum/genética , Solanum/genética , Alelos , Núcleo Celular/genética , Citoplasma/genética , Genotipo , Hibridación Genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum , Solanum/microbiología , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...