Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 235, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880634

RESUMEN

BACKGROUND: Severe peripheral nerve injury (PNI) often leads to significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain is crucial for the clinical treatment of PNI patients. However, established animal models for peripheral neuropathy fail to accurately recapitulate the clinical features of PNI. Additionally, researchers usually investigate neuropathic pain and axonal regeneration separately, leaving the intrinsic relationship between the development of neuropathic pain and nerve regeneration after PNI unclear. To explore the underlying connections between pain and regeneration after PNI and provide potential molecular targets, we performed single-cell RNA sequencing and functional verification in an established rat model, allowing simultaneous study of the neuropathic pain and axonal regeneration after PNI. RESULTS: First, a novel rat model named spared nerve crush (SNC) was created. In this model, two branches of the sciatic nerve were crushed, but the epineurium remained unsevered. This model successfully recapitulated both neuropathic pain and axonal regeneration after PNI, allowing for the study of the intrinsic link between these two crucial biological processes. Dorsal root ganglions (DRGs) from SNC and naïve rats at various time points after SNC were collected for single-cell RNA sequencing (scRNA-seq). After matching all scRNA-seq data to the 7 known DRG types, we discovered that the PEP1 and PEP3 DRG neuron subtypes increased in crushed and uncrushed DRG separately after SNC. Using experimental design scRNA-seq processing (EDSSP), we identified Adcyap1 as a potential gene contributing to both pain and nerve regeneration. Indeed, repeated intrathecal administration of PACAP38 mitigated pain and facilitated axonal regeneration, while Adcyap1 siRNA or PACAP6-38, an antagonist of PAC1R (a receptor of PACAP38) led to both mechanical hyperalgesia and delayed DRG axon regeneration in SNC rats. Moreover, these effects can be reversed by repeated intrathecal administration of PACAP38 in the acute phase but not the late phase after PNI, resulting in alleviated pain and promoted axonal regeneration. CONCLUSIONS: Our study reveals that Adcyap1 is an intrinsic protective factor linking neuropathic pain and axonal regeneration following PNI. This finding provides new potential targets and strategies for early therapeutic intervention of PNI.


Asunto(s)
Axones , Neuralgia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ratas , Axones/fisiología , Ganglios Espinales/fisiología , Regeneración Nerviosa/genética , Neuralgia/genética , Neuronas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Factores Protectores , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
2.
Neurosci Bull ; 35(3): 401-418, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30659524

RESUMEN

Investigation of pain requires measurements of nociceptive sensitivity and other pain-related behaviors. Recent studies have indicated the superiority of gait analysis over traditional evaluations (e.g., skin sensitivity and sciatic function index [SFI]) in detecting subtle improvements and deteriorations in animal models. Here, pain-related gait parameters, whose criteria include (1) alteration in pain models, (2) correlation with nociceptive threshold, and (3) normalization by analgesics, were identified in representative models of neuropathic pain (spared nerve injury: coordination data) and inflammatory pain (intraplantar complete Freund's adjuvant: both coordination and intensity data) in the DigiGait™ and CatWalk™ systems. DigiGait™ had advantages in fixed speed (controlled by treadmill) and dynamic SFI, while CatWalk™ excelled in intrinsic velocity, intensity data, and high-quality 3D images. Insights into the applicability of each system may provide guidance for selecting the appropriate gait imaging system for different animal models and optimization for future pain research.


Asunto(s)
Analgésicos/administración & dosificación , Análisis de la Marcha/métodos , Marcha , Dolor/fisiopatología , Animales , Adyuvante de Freund/administración & dosificación , Marcha/efectos de los fármacos , Procesamiento de Imagen Asistido por Computador , Inflamación/inducido químicamente , Masculino , Neuralgia/fisiopatología , Neuralgia/prevención & control , Dolor/etiología , Dolor/prevención & control , Ratas Sprague-Dawley
3.
J Neurosci ; 38(7): 1756-1773, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29335353

RESUMEN

Potassium voltage-gated channel interacting protein 3 (KChIP3), also termed downstream regulatory element antagonist modulator (DREAM) and calsenilin, is a multifunctional protein belonging to the neuronal calcium sensor (NCS) family. Recent studies revealed the expression of KChIP3 in dorsal root ganglion (DRG) neurons, suggesting the potential role of KChIP3 in peripheral sensory processing. Herein, we show that KChIP3 colocalizes with transient receptor potential ion channel V1 (TRPV1), a critical molecule involved in peripheral sensitization during inflammatory pain. Furthermore, the N-terminal 31-50 fragment of KChIP3 is capable of binding both the intracellular N and C termini of TRPV1, which substantially decreases the surface localization of TRPV1 and the subsequent Ca2+ influx through the channel. Importantly, intrathecal administration of the transmembrane peptide transactivator of transcription (TAT)-31-50 remarkably reduces Ca2+ influx via TRPV1 in DRG neurons and alleviates thermal hyperalgesia and gait alterations in a complete Freund's adjuvant-induced inflammatory pain model in male rats. Moreover, intraplantar injection of TAT-31-50 attenuated the capsaicin-evoked spontaneous pain behavior and thermal hyperalgesia, which further strengthened the regulatory role of TAT-31-50 on TRPV1 channel. In addition, TAT-31-50 could also alleviate inflammatory thermal hyperalgesia in kcnip3-/- rats generated in our study, suggesting that the analgesic effect mediated by TAT-31-50 is independent of endogenous KChIP3. Our study reveals a novel peripheral mechanism for the analgesic function of KChIP3 and provides a potential analgesic agent, TAT-31-50, for the treatment of inflammatory pain.SIGNIFICANCE STATEMENT Inflammatory pain arising from inflamed or injured tissues significantly compromises the quality of life in patients. This study aims to elucidate the role of peripheral potassium channel interacting protein 3 (KChIP3) in inflammatory pain. Direct interaction of the KChIP3 N-terminal 31-50 fragment with transient receptor potential ion channel V1 (TRPV1) was demonstrated. The KChIP3-TRPV1 interaction reduces the surface localization of TRPV1 and thus alleviates heat hyperalgesia and gait alterations induced by peripheral inflammation. Furthermore, the transmembrane transactivator of transcription (TAT)-31-50 peptide showed analgesic effects on inflammatory hyperalgesia independently of endogenous KChIP3. This work reveals a novel mechanism of peripheral KChIP3 in inflammatory hyperalgesia that is distinct from its classical role as a transcriptional repressor in pain modulation.


Asunto(s)
Hiperalgesia/fisiopatología , Inflamación/fisiopatología , Proteínas de Interacción con los Canales Kv/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Señalización del Calcio , Represión Epigenética , Adyuvante de Freund , Marcha , Ganglios Espinales/efectos de los fármacos , Técnicas de Inactivación de Genes , Hiperalgesia/inducido químicamente , Inflamación/inducido químicamente , Inyecciones Espinales , Proteínas de Interacción con los Canales Kv/genética , Masculino , Dimensión del Dolor/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Ratas , Canales Catiónicos TRPV/efectos de los fármacos
4.
J Neurosci ; 38(1): 183-199, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29133434

RESUMEN

Functional synapse formation is critical for the wiring of neural circuits in the developing brain. The cell adhesion molecule N-cadherin plays important roles in target recognition and synaptogenesis. However, the molecular mechanisms that regulate the localization of N-cadherin and the subsequent effects remain poorly understood. Here, we show that protein kinase D1 (PKD1) directly binds to N-cadherin at amino acid residues 836-871 and phosphorylates it at Ser 869, 871, and 872, thereby increasing the surface localization of N-cadherin and promoting functional synapse formation in primary cultured hippocampal neurons obtained from embryonic day 18 rat embryos of either sex. Intriguingly, neuronal activity enhances the interactions between N-cadherin and PKD1, which are critical for the activity-dependent growth of dendritic spines. Accordingly, either disruption the binding between N-cadherin and PKD1 or preventing the phosphorylation of N-cadherin by PKD1 in the hippocampal CA1 region of male rat leads to the reduction in synapse number and impairment of LTP. Together, this study demonstrates a novel mechanism of PKD1 regulating the surface localization of N-cadherin and suggests that the PKD1-N-cadherin interaction is critical for synapse formation and function.SIGNIFICANCE STATEMENT Defects in synapse formation and function lead to various neurological diseases, although the mechanisms underlying the regulation of synapse development are far from clear. Our results suggest that protein kinase D1 (PKD1) functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation. Notably, we identified a crucial binding fragment to PKD1 at C terminus of N-cadherin, and this fragment also contains PKD1 phosphorylation sites. Through this interaction, PKD1 enhances the stability of N-cadherin on cell membrane and promotes synapse morphogenesis and synaptic plasticity in an activity-dependent manner. Our study reveals the role of PKD1 and the potential downstream mechanism in synapse development, and contributes to the research for neurodevelopment and the therapy for neurological diseases.


Asunto(s)
Cadherinas/metabolismo , Hipocampo/metabolismo , Sinapsis/fisiología , Canales Catiónicos TRPP/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Potenciación a Largo Plazo/fisiología , Masculino , Neuronas/efectos de los fármacos , Fosforilación , Embarazo , Cultivo Primario de Células , Unión Proteica , Ratas , Ratas Sprague-Dawley
6.
Nat Commun ; 6: 7660, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26179626

RESUMEN

The medial prefrontal cortex (mPFC) is implicated in processing sensory-discriminative and affective pain. Nonetheless, the underlying mechanisms are poorly understood. Here we demonstrate a role for excitatory neurons in the prelimbic cortex (PL), a sub-region of mPFC, in the regulation of pain sensation and anxiety-like behaviours. Using a chronic inflammatory pain model, we show that lesion of the PL contralateral but not ipsilateral to the inflamed paw attenuates hyperalgesia and anxiety-like behaviours in rats. Optogenetic activation of contralateral PL excitatory neurons exerts analgesic and anxiolytic effects in mice subjected to chronic pain, whereas inhibition is anxiogenic in naive mice. The intrinsic excitability of contralateral PL excitatory neurons is decreased in chronic pain rats; knocking down cyclin-dependent kinase 5 reverses this deactivation and alleviates behavioural impairments. Together, our findings provide novel insights into the role of PL excitatory neurons in the regulation of sensory and affective pain.


Asunto(s)
Ansiedad/genética , Conducta Animal , Dolor Crónico/genética , Quinasa 5 Dependiente de la Ciclina/genética , Hiperalgesia/genética , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/psicología , Dolor Crónico/metabolismo , Dolor Crónico/psicología , Conducta Exploratoria , Técnicas de Silenciamiento del Gen , Hiperalgesia/metabolismo , Hiperalgesia/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...