Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
China CDC Wkly ; 6(17): 378-382, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38737824

RESUMEN

Introduction: Laiza and nearby areas (LNA) in Myanmar are identified as the primary malaria hotspots in the bordering regions of Yunnan Province, China. Methods: Six sentinel surveillance sites were established at the China-Myanmar border in LNA to monitor malaria. Data from 2019 was used as a baseline to analyze malaria incidence and trends in LNA and Myanmar, as well as the importation of malaria cases into China from 2019 to 2023. Results: Plasmodium vivax was the predominant species, representing 99.95% (14,060/14,066) of confirmed malaria cases in LNA. A total of 8,356 malaria cases were identified in 2023, with an annual parasite incidence (API) of 19.78 per 100 person-years. Compared to 2019, the incidence rate ratio was 21.47 (95% confidence interval: 18.84, 24.48), indicating that the API in 2023 was 21.47 times higher than that in 2019. In Yunnan, out of 1,016 reported cases, 545 imported cases (53.64%) originated from LNA and spread to 18 (13.95%) out of 129 counties. Ten provinces in China, including Yunnan, reported imported malaria cases from LNA in Myanmar. Conclusions: The increase in population, particularly among internally displaced persons, along with inadequate healthcare services, has led to a notable resurgence of malaria in LNA. This resurgence poses a risk to preventing the re-emergence of malaria transmission in China. There is an urgent need for novel collaborative policies, as well as financial and technical assistance, to enhance malaria control efforts in LNA, Myanmar.

2.
Heliyon ; 10(9): e30692, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38774098

RESUMEN

Ionic liquids (ILs) have attracted considerable interest in the last two decades owing to their unique fluorescent properties. Herein, N-octylpyridine hydrogen sulphate ([OP]HSO4) was synthesised and characterised using 1H NMR and infrared spectroscopies. In addition, the fluorescence spectra of [OP]HSO4 in water, methanol, ethanol and acetonitrile were studied. In a single solvent, as the concentration of the solvent (methanol, ethanol or acetonitrile) increases, the fluorescence intensity of the IL first increases and then decreases. A similar trend was observed in their mixed solvents with water. Moreover, the fluorescence intensity of [OP]HSO4 decreases with increasing temperature. A fluorescence intensity reduction of only 4.46% for [OP]HSO4 after continuous scanning for 40 cycles under the maximum excitation state was analysed. The lack of photobleaching observed in [OP]HSO4 indicates its good photobleaching resistance.

3.
Nanoscale ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758041

RESUMEN

PEO is one of the common composite polymer electrolyte vehicles; however, the presence of crystalline phase at room temperature, high interface impedance, and low oxidation resistance (<4.0 V) limit its application in stable all-solid-state lithium metal batteries. Herein, we designed a PEO-based solid polymer electrolyte (SPE) by adding boehmite nanoparticles to address the above-mentioned issues. Different-grain-sized boehmite nanoparticles were synthesized by adjusting the hydrothermal temperature. Moreover, the impacts of these distinct grain-sized boehmite nanoparticles used to fabricate boehmite/PEO polymer electrolytes (BPEs) on the performance of all-solid-state lithium metal batteries were investigated. It was found that with the increase in boehmite's grain size, BPEs show better performance. The best BPE exhibited an improved Li+ transference number (0.59), high ionic conductivity (1.25 × 10-4 S m-1), and wide electrochemical window (∼4.5 V) at 60 °C. The assembled lithium symmetric battery can stably undergo 500 hours of lithium plating/stripping at 0.1 mA cm-2. At the same time, the LiFePO4/BPE/Li battery exhibits excellent cycling stability after 100 cycles at 0.5C. This reasonable design strategy with a superior capacity retention rate (86%) demonstrates great potential in achieving high ionic conductivity and good interface stability for all-solid-state lithium metal batteries simultaneously.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38613579

RESUMEN

PURPOSE: Although urgent orbital decompression surgery for sight-threatening Graves' orbitopathy unresponsive to available medical treatments continues to evolve, post-operative new-onset or worsened pre-operative strabismus or diplopia remains a significant complication. At present, the optimal surgical technique remains debatable. Here, we sought to compare long-term outcomes after balanced medial-lateral wall versus selective 3-wall decompression as an urgent treatment for unresponsive sight-threatening GO. METHODS: This retrospective study examined the post-operative outcome of 102 eyes (57 patients) that underwent urgent orbital decompression for sight-threatening GO. Treatment effectiveness was measured by visual acuity, proptosis, perimetry, and strabismus/diplopia, while fundus findings were detected by fundus color photography and optical coherence tomography and followed up for more than 12 months. RESULTS: Fifty-seven patients (102 orbits) with an average age of 52.7 ± 10.2 years were evaluated. Balanced medial-lateral wall (BMLW-OD) or selective 3-wall decompression(S3W-OD) were performed in 54 and 48 eyes, respectively. Twelve months after orbital decompression, all parameters significantly improved in both groups, including best-corrected visual acuity (BCVA), mean defect of visual field (VF-MD), pattern standard deviation of visual field (VF-PSD), and proptosis (all P < 0.01). However, new-onset esotropia occurred in 25.8% and 3.8% of patients who underwent BMLW-OD surgery or S3W-OD, respectively. Moreover, 6.5% and 38.5% of patients improved after decompression in the medial-lateral wall decompression group and the selective 3-wall decompression group, respectively. CONCLUSIONS: We demonstrated that S3W-OD provides a lower rate of new-onset strabismus/diplopia as compared with BMLW-OD surgery, while still allowing for satisfactory visual outcomes. TRIAL REGISTRATION NUMBER:  : NCT05627401. Date of registration: November 25, 2022.

5.
ACS Appl Mater Interfaces ; 16(15): 18745-18753, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573811

RESUMEN

Zeolite-catalyzed dimethyl ether (DME) carbonylation provides a novel route to producing methyl acetate (MeOAc). Mordenite (MOR) has drawn significant interest because of its remarkable MeOAc selectivity in DME carbonylation, albeit with limited catalytic stability. Herein, novel MOR-based DME carbonylation catalysts, distinguished by long-term stability and high activity were successfully developed, based on an H2-promoted benign coke strategy. Both the H2 cofeeds and the presence of metal species with hydrogenation capability are demonstrated to be crucial for the regulation of coke depositions. The coke deposits can potentially cover the acid sites in the 12-MR main channels, thereby mitigating the occurrence of undesirable methanol-to-hydrocarbon side reactions. Meanwhile, the elimination of ultralarge coke species under the assistance of H2 and Cu species could ensure smooth mass transfer within the catalyst, contributing to its remarkable catalytic performance. The most highlighted DME carbonylation performance was achieved on coke-mediated CuZn-HMOR with a high MeOAc yield of 0.4-0.5 g·gcat-1·h-1 for over 520 h (over 50× enhancement versus HMOR), exhibiting promising industrial application potential. The current strategy is expected to inspire further research into zeolite-catalyzed reactions, which could be potentially improved by the presence of benign coke.

6.
Sci Rep ; 14(1): 9317, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653748

RESUMEN

Carbon fibre-reinforced polymer (CFRP) plates can efficiently repair or enhance the mechanical properties of the square hollow section. However, the loading end of such a CFRP-strengthened member is prone to local bearing failure under compressive load. Given this limitation, an innovative CFRP-plate-strengthened square hollow section composite member (CFRP-SHSCM) was raised, and the thick-walled section was welded on both ends of the thin-walled steel column. The mechanical properties of CFRP-SHSCMs were investigated through parameter finite element (FE) analysis, focusing on the influence of the amount of CFRP layers (nc), the slenderness ratio (λ), the initial geometric imperfections (v0), the CFRP layouts (2S and 4S) and the length of the exposed steel column (Le). The load-displacement curves, the bearing force, and typical failure modes were also acquired. Results indicated that with increasing nc and v0, and decreasing λ, the conventional CFRP-SHSCMs were prone to local bearing failure with poor ductility, leading to the insufficient use of the CFRP plate, in contrast, the improved CFRP-SHSCMs primarily underwent overall buckling failure and exhibited better bearing force and ductility. Finally, the modified Perry-Robertson formula was put forward to predict the ultimate load of the CFRP-SHSCMs. The coefficients of variation between the FE simulation and the theoretical results were 0.00436 and 0.0292, respectively.

7.
Ecotoxicol Environ Saf ; 276: 116307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593497

RESUMEN

In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.


Asunto(s)
Sulfuro de Hidrógeno , Plantas , Transducción de Señal , Tiocianatos , Sulfuro de Hidrógeno/metabolismo , Tiocianatos/metabolismo , Plantas/metabolismo , Gasotransmisores/metabolismo , Cloroplastos/metabolismo , Inactivación Metabólica
8.
Plants (Basel) ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592960

RESUMEN

Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.

10.
Chem Commun (Camb) ; 60(36): 4805-4809, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602381

RESUMEN

A rapid and eco-friendly route has been developed for the synthesis of SAPO-34 with short crystallization time (1-3 h), low silica content (as low as 6.2 wt%) and excellent methanol-to-olefin (MTO) catalytic performance by utilization of a recycled mother liquid at elevated crystallization temperature.

11.
Yi Chuan ; 46(3): 242-255, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632102

RESUMEN

To understand the genome-wide information of the GRF family genes in broomcorn millet and their expression profile in the vegetative meristems, bioinformatic methods and transcriptome sequencing were used to analyze the characteristics, physical and chemical properties, phylogenetic relationship, chromosome distribution, gene structure, cis-acting elements and expression profile in stem meristem for the GRF family members. The results showed that the GRF gene family of millet contains 21 members, and the PmGRF gene is unevenly distributed on 12 chromosomes. The lengths of PmGRF proteins vary from 224 to 618 amino acids, and the isoelectric points are between 4.93-9.69. Each member of the family has 1-4 introns and 2-5 exons. The protein PmGRF13 is localized in both the nucleus and chloroplast, and the rest PmGRF proteins are located in the nucleus. Phylogenetic analysis showed that the 21 GRF genes were divided into 4 subfamilies (A,B,C and D) in broomcorn millet. The analysis of cis-acting elements showed that there were many cis-acting elements involved in light response, hormone response, drought induction, low temperature response and other environmental stress responses in the 2000 bp sequence upstream of the GRF genes. Transcriptome sequencing and qRT-PCR analyses showed that the expression levels of PmGRF3 and PmGRF12 in the dwarf variety Zhang778 were significantly higher than those of the tall variety Longmi12 in the internode and node meristems at the jointing stage, while the expression patterns of PmGRF4, PmGRF16 and PmGRF21 were reverse. In addition, the expression levels of PmGRF2 and PmGRF5 in the internode of Zhang778 were significantly higher than Longmi12. The other GRF genes were not or insignificantly expressed. These results indicated that seven genes, PmGRF2, PmGRF3, PmGRF4, PmGRF5, PmGRF12, PmGRF16 and PmGRF21, were related to the formation of plant height in broomcorn millet.


Asunto(s)
Panicum , Filogenia , Panicum/química , Panicum/genética , Factores de Transcripción/genética , Meristema , Genoma de Planta
12.
Sci Total Environ ; 925: 171752, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494032

RESUMEN

Plant- and microbial-derived organic carbon, two components of the soil organic carbon (SOC) pool in terrestrial ecosystems, are regulated by increased atmospheric nitrogen (N) deposition. However, the spatial patterns and driving factors of the responses of plant- and microbial-derived SOC to N deposition in forests are not clear, which hinders our understanding of SOC sequestration. In this study, we explored the spatial patterns of plant- and microbial-derived SOC, and their responses to N addition and elucidated their underlying mechanisms in forest soils receiving N addition at four sites with various soil and climate conditions. Plant- and microbial-derived SOC were quantified using lignin phenols and amino sugars, respectively. N addition increased the total microbial residues by 20.5% on average ranging from 9.4% to 34.0% in temperate forests but not in tropical forests, and the increase was mainly derived from fungal residues. Lignin phenols increased more in temperate forests (average of 63.8%) than in tropical forests (average of 15.7%) following N addition. The ratio of total amino sugars to lignin phenols was higher in temperate forests than in tropical forests and decreased with N addition in temperate forests. N addition mainly regulated soil microbial residues by affecting pH, SOC, exchangeable Ca2+, gram-negative bacteria biomass, and the C:N ratio, while it mainly had indirect effects on lignin phenols by altering SOC, soil C:N ratio, and gram-negative bacteria biomass. Overall, our findings suggested that N deposition caused a greater increase in plant-derived SOC than in microbial-derived SOC and that plant-derived SOC would have a more important role in sequestering SOC under increasing N deposition in forest ecosystems, particularly in temperate forests.


Asunto(s)
Ecosistema , Tracheophyta , Carbono , Suelo/química , Nitrógeno/análisis , Lignina , Bosques , Microbiología del Suelo , Amino Azúcares , Fenoles
13.
Clin Lab ; 70(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469790

RESUMEN

BACKGROUND: This case involves a 28-year-old pregnant woman (39w+2) who was admitted to obstetrics due to abdominal tightness and bacteremia with Gardnerella vaginalis which developed after caesarean section and vaginal myomectomy. METHODS: A blood culture was performed, and the bacteria were identified through mass spectrometry. RESULTS: Mass spectrometry data indicated that the infection bacteria were Gardnerella vaginalis. The patient's temperature returned to normal after oral ampicillin in combination with clindamycin. CONCLUSIONS: Gardnerella vaginalis bacteremia is very rare in clinical practice, and the combination of ampicillin and clindamycin has a good therapeutic effect. This study may provide a reference for the diagnosis and treatment of Gardnerella vaginalis bacteremia.


Asunto(s)
Bacteriemia , Miomectomía Uterina , Vaginosis Bacteriana , Femenino , Embarazo , Humanos , Adulto , Gardnerella vaginalis , Mujeres Embarazadas , Clindamicina/uso terapéutico , Cesárea/efectos adversos , Ampicilina/uso terapéutico , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Vaginosis Bacteriana/tratamiento farmacológico , Vagina
14.
Redox Biol ; 70: 103073, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335622

RESUMEN

Defects of human trophoblast cells may induce miscarriage (abnormal early embryo loss), which is generally regulated by lncRNAs. Ferroptosis is a newly identified iron-dependent programmed cell death. Hypoxia is an important and unavoidable feature in mammalian cells. However, whether hypoxia might induce trophoblast cell ferroptosis and then induce miscarriage, as well as regulated by a lncRNA, was completely unknown. In this work, we discovered at the first time that hypoxia could result in ferroptosis of human trophoblast cells and then induce miscarriage. We also identified a novel lncRNA (lnc-HZ06) that simultaneously regulated hypoxia (indicated by HIF1α protein), ferroptosis, and miscarriage. In mechanism, HIF1α-SUMO, instead of HIF1α itself, primarily acted as a transcription factor to promote the transcription of NCOA4 (ferroptosis indicator) in hypoxic trophoblast cells. Lnc-HZ06 promoted the SUMOylation of HIF1α by suppressing SENP1-mediated deSUMOylation. HIF1α-SUMO also acted as a transcription factor to promote lnc-HZ06 transcription. Thus, both lnc-HZ06 and HIF1α-SUMO formed a positive auto-regulatory feedback loop. This loop was up-regulated in hypoxic trophoblast cells, in RM villous tissues, and in placental tissues of hypoxia-treated mice, which further induced ferroptosis and miscarriage by up-regulating HIF1α-SUMO-mediated NCOA4 transcription. Furthermore, knockdown of either murine lnc-hz06 or Ncoa4 could efficiently suppress ferroptosis and alleviate miscarriage in hypoxic mouse model. Taken together, this study provided new insights in understanding the regulatory roles of lnc-HZ06/HIF1α-SUMO/NCOA4 axis among hypoxia, ferroptosis, and miscarriage, and also offered an effective approach for treatment against miscarriage.


Asunto(s)
Aborto Espontáneo , Ferroptosis , ARN Largo no Codificante , Ratones , Femenino , Humanos , Embarazo , Animales , Ferroptosis/genética , ARN Largo no Codificante/genética , Placenta , Hipoxia de la Célula , Hipoxia/genética , Factores de Transcripción , Trofoblastos , Mamíferos , Coactivadores de Receptor Nuclear
15.
Microorganisms ; 12(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38258013

RESUMEN

The South China Sea (SCS) is abundant in marine microbial resources with high primary productivity, which is crucial for sustaining the coral reef ecosystem and the carbon cycle. Currently, research on the diversity of culturable bacteria in the SCS is relatively extensive, yet the culturable bacteria in coral reefs has been poorly understood. In this study, we analyzed the bacterial community structure of seawater samples among Daya Bay (Fujian Province), Qionghai (Hainan Province), Xisha Islands, and the southern South China Sea based on culturable methods and detected their abilities for agar degradation. There were 441 bacterial strains, belonging to three phyla, five classes, 43 genera, and 101 species, which were isolated by marine agar 2216E (MA; Becton Dickinson). Strains within Gammaproteobacteria were the dominant group, accounting for 89.6% of the total bacterial isolates. To investigate vibrios, which usually correlated with coral health, 348 isolates were obtained from TCBS agar, and all isolates were identified into three phylum, three classes, 14 orders, 25 families, and 48 genera. Strains belonging to the genus Vibrio had the greatest number (294 strains), indicating the high selectivity of TCBS agar for vibrios. Furthermore, nineteen strains were identified as potentially novel species according to the low 16S rRNA gene similarity (<98.65%), and 28 strains (15 species) had agar-degrading ability. These results indicate a high diversity of culturable bacteria in the SCS and a huge possibility to find novel and agar-degrading species. Our study provides valuable microbial resources to maintain the stability of coral ecosystems and investigate their roles in the marine carbon cycle.

16.
ESC Heart Fail ; 11(2): 1110-1120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266632

RESUMEN

AIMS: Red blood cell distribution width-to-albumin ratio (RAR), an innovate biomarker of inflammation, can independently predict adverse cardiovascular outcomes. However, the association between RAR and prognosis in patients with non-ischaemic heart failure (NIHF) remains unclear. METHODS AND RESULTS: A total of 2077 NIHF patients admitted to the Heart Failure Care Unit, Fuwai Hospital, were consecutively enrolled from December 2006 to October 2017 in this retrospective study. The primary endpoint was a composite outcome of all-cause mortality and heart transplantation. The correlation between RAR and the composite outcome was assessed by the Kaplan-Meier survival analysis and the Cox regression analysis. Incremental predictive values and the clinical performance of RAR for all-cause mortality or heart transplantation were also assessed based on a 12-variable traditional risk model. The median follow-up time in this study was 1433 (1341, 1525) days. As the gender no longer satisfied the Cox proportional risk assumption after 1150 days, we set 1095 days as the follow-up time for analysis. A total of 500 patients reached the composite outcome. Multivariable Cox regression showed that per log2 increase of RAR was significantly associated with a 132.9% [hazard ratio 2.329, 95% confidence interval (CI) 1.677-3.237, P < 0.001] increased risk of all-cause mortality or heart transplantation. Better model discrimination [concordance index: 0.766 (95% CI 0.754-0.778) vs. 0.758 (95% CI 0.746-0.770), P < 0.001], calibration (Akaike information criterion: 1487.3 vs. 1495.74; Bayesian information criterion: 1566.25 vs. 1569.43; Brier score: 1569.43 vs. 1569.43; likelihood ratio test P < 0.001), and reclassification (integrated discrimination improvement: 1.35%, 95% CI 0.63-2.07%, P < 0.001; net reclassification improvement: 13.73%, 95% CI 2.05-27.18%, P = 0.034) were improved after adding RAR to the traditional model (P < 0.001 for all). A higher overall net benefit was also obtained in the threshold risk probability of 20-55%. CONCLUSIONS: High level of RAR was an independent risk factor of poor outcome in NIHF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Estudios Retrospectivos , Teorema de Bayes , Pronóstico , Eritrocitos
17.
Chemosphere ; 352: 141290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280649

RESUMEN

The effect of boron (B) deficiency on mediating the contribution of H+-ATPase in the uptake and assimilation of exogenous cyanide (CN-) is investigated. Under CN- treatments, rice seedlings with B-deficient (-B) conditions exhibited significantly higher CN- uptake and assimilation rates than B-supplemented (+B) seedlings, whereas NH4+ uptake and assimilation rates were slightly higher in -B rice seedlings than in +B. In this connection, the expression pattern of genes encoding ß-CAS, ST, and H+-ATPase was assessed to unravel their role in the current scenario. The abundances of three ß-CAS isogenes (OsCYS-D1, OsCYS-D2, and OsCYS-C1) in rice tissues are upregulated from both "CN--B" and "CN-+B" treatments, however, only OsCYS-C1 in roots from the "CN--B" treatments was significantly upregulated than "CN-+B" treatments. Expression patterns of ST-related genes (OsStr9, OsStr22, and OsStr23) are tissue specific, in which significantly higher upregulation of ST-related genes was observed in shoots from "CN--B" treatments than "CN-+B" treatments. Expression pattern of 7 selected H+-ATPase isogenes, OsA1, OSA2, OsA3, OsA4, OsA7, OsA8, and OsA9 are quite tissue specific between "CN-+B" and "CN--B" treatments. Among these, OsA4 and OsA7 genes were highly activated in the uptake and assimilation of exogenous CN- in -B nutrient solution. These results indicated that B deficiency disturbs the pattern of N cycles in CN--treated rice seedlings, where activation of ST during CN- assimilation decreases the flux of the innate pool of NH4+ produced from CN- assimilation by the ß-CAS pathway in plants. Collectively, the B deficiency increased the uptake and assimilation of exogenous CN- through activating H+-ATPase.


Asunto(s)
Cianuros , Oryza , Oryza/metabolismo , Boro/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/farmacología , Plantones/metabolismo , Membrana Celular , Raíces de Plantas/metabolismo
18.
Nat Prod Res ; 38(4): 581-588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36855227

RESUMEN

The chemical epigenetic modifier 5-azacitidine (5-Aza C), a DNA methyltransferase inhibitor, was used to manipulate the endophytic fungus Penicillium sp. KMU18029. From its rice fermentation extract, a new polyketone compound (3S,4R)-3,4,8-trihydroxy-6-methyl-3,4-dihydronaphthalen-1(2H)-one (1), along with 13 known compounds, 3,4,8-trihydroxy-6-(hydroxymethyl)-3,4-dihydronaphthalen-1(2H)-one (2), decaturin B (3), 15-hydroxydecaturin A (4), oxalicine A (5), pileotin A (6), pyrandecarurin A (7), decaturenol A (8), decaturenoid (9), penisarins A (10), oxaline (11), (4E,8E)-N-D-2'-hydroxyocta-decanoyl-1-O-ß-D-glycopy-ranosyl-9-methyl-4,8-sphingadienine (12), ergosterol (13) and stigma-5-en-3-O-ß-glucoside (14), were separated. Among the known compounds, 2, 7, 12 and 14 were not found in our previous research on this strain. The structure of the new compound was identified by spectroscopic techniques such as HR-ESIMS, 1D NMR, 2D NMR and CD. Furthermore, all the isolated compounds were tested for their antimicrobial activities, and only compounds 1, 2 and 11 showed weak activities against S. aureus, with MICs of 128 µg/mL.


Asunto(s)
Azacitidina , Penicillium , Penicillium/química , Estructura Molecular , Staphylococcus aureus , Espectroscopía de Resonancia Magnética , Epigénesis Genética
19.
J Proteomics ; 292: 105057, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38043864

RESUMEN

The erythromycin polyketide compound TMC-154 is a secondary metabolite that is isolated from the rhizospheric fungus Clonostachys rogersoniana associated with Panax notoginseng, which possesses antibacterial activity. However, its antibacterial mechanism has not been investigated thus far. In this study, proteomics coupled with bioinformatics approaches was used to explore the antibacterial mechanism of TMC-154. KEGG pathway enrichment analysis indicated that eight signaling pathways were associated with TMC-154, including oxidative phosphorylation, cationic antimicrobial peptide (CAMP) resistance, benzoate degradation, heme acquisition systems, glycine/serine and threonine metabolism, beta-lactam resistance, ascorbate and aldarate metabolism, and phosphotransferase system (PTS). Cell biology experiments confirmed that TMC-154 could induce reactive oxygen species (ROS) generation in Streptococcus pyogenes; moreover, TMC-154-induced antibacterial effects could be blocked by the inhibition of ROS generation with the antioxidant N-acetyl L-cysteine. In addition, TMC-154 combined with ciprofloxacin or chloramphenicol had synergistic antibacterial effects. These findings indicate the potential of TMC-154 as a promising drug to treat S. pyogenes infections. SIGNIFICANCE: Streptococcus pyogenes is a nearly ubiquitous human pathogen that causes a variety of diseases ranging from mild pharyngitis and skin infection to fatal sepsis and toxic heat shock syndrome. With the increasing incidence of known antibiotic resistance, there is an urgent need to find novel drugs with good antibacterial activity against S. pyogenes. In this study, we found that TMC-154, a secondary metabolite from the fungus Clonostachys rogersoniana, inhibited the growth of various bacteria, including Staphylococcus aureus, S. pyogenes, Streptococcus mutans, Pseudomonas aeruginosa and Vibrio parahemolyticus. Proteomic analysis combined with cell biology experiments revealed that TMC-154 stimulated ROS generation to exert antibacterial effects against S. pyogenes. This study provides potential options for the treatment of S. pyogenes infections in the future.


Asunto(s)
Eritromicina , Streptococcus pyogenes , Humanos , Eritromicina/farmacología , Especies Reactivas de Oxígeno , Proteómica , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
20.
J Infect Chemother ; 30(3): 208-212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012984

RESUMEN

INTRODUCTION: As an infectious disease, tuberculosis (TB) poses a serious threat to public health. Although amikacin (AMK) is an important antibiotic for the treatment of drug-resistant TB, its resistance mechanisms are not fully understood. METHODS: To investigate the role of Rv3737 gene on AMK drug susceptibility, a Mycobacterium tuberculosis (M.tb) Rv3737 knockout strain (H37Rv△Rv3737) and a Mycobacterium smegmatis (M.sm) Rv3737 overexpressing strain (Msm/pMV261-Rv3737) were used to detect their minimal inhibitory concentrations (MICs) in this study. RESULTS: The AMK MICs of Rv3737 knockout and overexpressing strains were 4-fold lower and 2-fold higher than those of the wild-type and empty plasmid strains, respectively. The results of clinical isolates showed that no Rv3737 gene mutation was found to be associated with AMK susceptibility, while the rrs A1401G mutation remained the main mechanism of high level of AMK resistance (MIC>32 µg/ml). There was a positive correlation between Rv3737 mRNA expression level and AMK MIC. In the isolates with low-level AMK resistance (MIC = 4 µg/ml) without rrs A1401G mutation, the expression level of Rv3737 gene was significantly higher than those of susceptible isolates. CONCLUSIONS: In this study, the Rv3737 gene was reported for the first time for its effect on AMK susceptibility in M.tb. Although the rrs A1401G mutation remains the main reason of high-level AMK resistance, high expression of the Rv3737 gene was associated with low-level AMK resistance in clinical isolates.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Amicacina/farmacología , Amicacina/uso terapéutico , Kanamicina/farmacología , Capreomicina/farmacología , Capreomicina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mutación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...