Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 24(5): 1374-80, 2013 May.
Artículo en Chino | MEDLINE | ID: mdl-24015558

RESUMEN

By using static chamber-TGC method, an in situ observation was conducted in a 10-year conservation tillage winter wheat field to study the effects of different maize straw-returning modes on the soil respiration. The soil respiration had a significant positive correlation with the stubble height of maize straw, and two peaks were observed in wheat growth period. Under no tillage and no straw-returning, the soil respiration was 72.5% of that under no tillage with all straw-returning, and the soil respiration under conventional tillage and no straw- returning was 76.5% of that under conventional tillage with all straw-returning. The soil respiration was significantly positively correlated with the soil temperature and soil organic carbon at 20 cm depth, but no significant correlation with the soil organic carbon at 40 cm depth. A correlation was also observed between the soil respiration and soil moisture. The diurnal soil respiration in the treatments of all straw-returning presented a single-peak curve, with the peak at 18:00. There was a similar variation trend of soil temperature and soil respiration at the depth of 20 cm. Among the treatments of different straw-returning amounts, straw-returning with the stubble of 1 m height could reduce the soil respiration significantly, being a reasonable straw-returning mode.


Asunto(s)
Agricultura/métodos , Tallos de la Planta/química , Suelo/química , Triticum/crecimiento & desarrollo , Zea mays/química , Carbono/análisis , Dióxido de Carbono/análisis , Eliminación de Residuos/métodos
2.
Ying Yong Sheng Tai Xue Bao ; 22(5): 1183-8, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21812292

RESUMEN

Taking a long-term (since 2004) straw-returning winter wheat field as the object, an investigation was made in the wheat growth seasons of 2008-2009 and 2009-2010 to study the effects of different tillage methods (rotary tillage, harrow tillage, no-tillage, subsoil tillage, and conventional tillage) and weed management on the soil water and organic carbon contents. No matter retaining or removing weeds, the weed density under subsoil tillage and no-tillage was much higher than that under rotary tillage, harrow tillage, and conventional tillage. From the jointing to the milking stage of winter wheat, retaining definite amounts of weeds, no matter which tillage method was adopted, could significantly increase the 0-20 cm soil water content, suggesting the soil water conservation effect of retaining weeds. Retaining weeds only increased the soil organic carbon content in 0-20 cm layer at jointing stage. At heading and milking stages, the soil organic carbon contents in 0-20, 20-40, and 40-60 cm layers were lower under weed retaining than under weed removal. Under the conditions of weed removal, the grain yield under subsoil tillage increased significantly, compared with that under the other four tillage methods. Under the conditions of weed retaining, the grain yield was the highest under rotary tillage, and the lowest under conventional tillage.


Asunto(s)
Agricultura/métodos , Carbono/análisis , Suelo/análisis , Triticum/crecimiento & desarrollo , Agua/análisis , Compuestos Orgánicos/análisis , Poaceae/crecimiento & desarrollo , Control de Malezas/métodos
3.
Ying Yong Sheng Tai Xue Bao ; 21(2): 373-8, 2010 Feb.
Artículo en Chino | MEDLINE | ID: mdl-20462008

RESUMEN

A two growth seasons experiment was conducted to study the effects of different tillage methods, straw-returning, and their interaction on the dynamic change of organic carbon content in 0-20 cm soil layer during the whole growth period of winter wheat. An obvious change was observed in the soil organic carbon content. Treatments with straw-returning had higher soil organic carbon content than treatments with no straw-returning, and conservation tillage induced higher soil organic carbon content than conventional tillage. In all treatments except conventional tillage, the organic carbon content in 0-10 cm soil layer was higher than that in 10-20 cm soil layer. In treatments with straw-returning, the organic carbon content in 0-10 cm soil layer decreased in order of deep soiling (PS) > rotary tillage (PR) > no tillage (PZ) > normal ploughing (PH) > conventional tillage (PC), while that in 10-20 cm soil layer was PC > PS > PR > PH > PZ, suggesting that conservation tillage could improve the organic carbon content in 0-10 cm soil layer. Multi factor variance analysis showed that tillage method, straw-returning, and their interaction had significant effects on the organic carbon content in 0-20 cm soil layer at various growth stages of winter wheat.


Asunto(s)
Agricultura/métodos , Carbono/análisis , Tallos de la Planta/química , Suelo/análisis , Triticum/crecimiento & desarrollo , Análisis de Varianza , Compuestos Orgánicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...