Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401716, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840455

RESUMEN

The demand for miniaturized and integrated multifunctional devices drives the progression of high-performance infrared photodetectors for diverse applications, including remote sensing, air defense, and communications, among others. Nonetheless, infrared photodetectors that rely solely on single low-dimensional materials often face challenges due to the limited absorption cross-section and suboptimal carrier mobility, which can impair sensitivity and prolong response times. Here, through experimental validation is demonstrated, precise control over energy band alignment in a type-II van der Waals heterojunction, comprising vertically stacked 2D Ta2NiSe5 and the topological insulator Bi2Se3, where the configuration enables polarization-sensitive, wide-spectral-range photodetection. Experimental evaluations at room temperature reveal that the device exhibits a self-powered responsivity of 0.48 A·W-1, a specific directivity of 3.8 × 1011 cm·Hz1/2·W-1, a response time of 151 µs, and a polarization ratio of 2.83. The stable and rapid photoresponse of the device underpins the utility in infrared-coded communication and dual-channel imaging, showing the substantial potential of the detector. These findings articulate a systematic approach to developing miniaturized, multifunctional room-temperature infrared detectors with superior performance metrics and enhanced capabilities for multi-information acquisition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA