Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(8): 1971-1982, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358534

RESUMEN

Hand, foot, and mouth disease (HFMD) caused by various enteroviruses is a major public health concern globally. Human enterovirus 71(EVA71), coxsackievirus A16 (CVA16), coxsackievirus A6 (CVA6), and coxsackievirus A10 (CVA10) are four major enteroviruses responsible for HFMD. Rapid, accurate, and specific point-of-care (POC) detection of the four enteroviruses is crucial for the prevention and control of HFMD. Here, we developed two multiplex high-fidelity DNA polymerase loop-mediated isothermal amplification (mHiFi-LAMP) assays for simultaneous detection of EVA71, CVA16, CVA6, and CVA10. The assays have good specificity and exhibit high sensitivity, with limits of detection (LOD) of 11.2, 49.6, 11.4, and 20.5 copies per 25 µL reaction for EVA71, CVA16, CVA6, and CVA10, respectively. The mHiFi-LAMP assays showed an excellent clinical performance (sensitivity 100.0%, specificity 83.3%, n = 47) when compared with four singleplex RT-qPCR assays (sensitivity 93.1%, specificity 100%). In particular, the HiFi-LAMP assays exhibited better performance (sensitivity 100.0%, specificity 100%) for CVA16 and CVA6 than the RT-qPCR assays (sensitivity 75.0-92.3%, specificity 100%). Furthermore, the mHiFi-LAMP assays detected all clinical samples positive for the four enteroviruses within 30 min, obviously shorter than about 1-1.5 h by the RT-qPCR assays. The new mHiFi-LAMP assays can be used as a robust point-of-care testing (POCT) tool to facilitate surveillance of HFMD at rural and remote communities and resource-limited settings.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Técnicas de Amplificación de Ácido Nucleico , Humanos , Enfermedad de Boca, Mano y Pie/diagnóstico , Enterovirus/genética , Enterovirus Humano A/genética , Técnicas de Diagnóstico Molecular , China/epidemiología , Filogenia
2.
Nucleic Acids Res ; 52(D1): D1651-D1660, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37843152

RESUMEN

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.


Asunto(s)
Productos Agrícolas , Bases de Datos Genéticas , Productos Agrícolas/genética , Transcriptoma , Genoma de Planta
3.
Heliyon ; 9(11): e21591, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38106664

RESUMEN

Since China abandoned the zero-COVID policy at the end of 2022, a wave of severe Flu pandemic emerged in China. Rapid and accurate diagnosis of Influenza A virus (IAV) is critical for clinical management and therapeutic decision-making of patients with fever. Here, we reported a novel IAV HF-LAMP assay, which can be performed with purified RNA or directly using clinical samples. The assays with purified RNA and clinical samples have high sensitivity with limit of detection (LOD) of 9.6 copies/reaction, 9900 copies/mL, and short sample-to-answer times of 36 and 50 min, respectively. Both assays showed high specificity and significantly higher IAV detection rate than the rapid antigen detection (RAD) assays. Furthermore, we found the vast majority (91.2 %) of children with fever during the pandemic were infected by IAV, and current IAV infection has a very narrow detectable window. The novel IVA HF-LAMP assays will provide robust tools to facilitate early diagnosis of IAV infection in current and future seasonal influenza epidemics.

4.
Virus Evol ; 9(2): vead045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674817

RESUMEN

Anelloviruses (AVs) are ubiquitous in humans and are the most abundant components of the commensal virome. Previous studies on the diversity, transmission, and persistence of AVs mainly focused on the blood or transplanted tissues from adults; however, the profile of the anellome in the respiratory tract in children are barely known. We investigated the anellome profile and their dynamics in the upper respiratory tract from a cohort of children with acute respiratory tract infections (ARTIs). Different to that in adult, betatorquevirus is the most abundant genus, followed by alphatorquevirus. We found that the relative abundance of betatorquevirus was higher in earlier time points, and in contrast, the abundance of alphatorquevirus was higher in later time points; these results might suggest that betatorquevirus decreased with age and alphatorquevirus increased with age in childhood. No difference regarding the diversity and abundance of anellome was found between single and multiple ARTIs, consistent with the idea that AV is not associated with certain disease. Most AVs are transient, and a small proportion (8 per cent) of them were found to be possibly persistent, with persistence time ranging from 1 month to as long as 56 months. Furthermore, the individual respiratory anellome appeared to be unique and dynamic, and the replacement of existing AVs with new ones are common over different time points. These findings demonstrate that betatorquevirus may be the early colonizer in children, and the individual respiratory anellome is unique, which are featured by both chronic infections and AV community replacement.

5.
Nat Commun ; 14(1): 4651, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532727

RESUMEN

Understanding the genetic basis of rubber tree (Hevea brasiliensis) domestication is crucial for further improving natural rubber production to meet its increasing demand worldwide. Here we provide a high-quality H. brasiliensis genome assembly (1.58 Gb, contig N50 of 11.21 megabases), present a map of genome variations by resequencing 335 accessions and reveal domestication-related molecular signals and a major domestication trait, the higher number of laticifer rings. We further show that HbPSK5, encoding the small-peptide hormone phytosulfokine (PSK), is a key domestication gene and closely correlated with the major domestication trait. The transcriptional activation of HbPSK5 by myelocytomatosis (MYC) members links PSK signaling to jasmonates in regulating the laticifer differentiation in rubber tree. Heterologous overexpression of HbPSK5 in Russian dandelion (Taraxacum kok-saghyz) can increase rubber content by promoting laticifer formation. Our results provide an insight into target genes for improving rubber tree and accelerating the domestication of other rubber-producing plants.


Asunto(s)
Hevea , Hevea/genética , Goma , Domesticación , Análisis de Secuencia de ADN , Genómica , Regulación de la Expresión Génica de las Plantas
6.
Exp Ther Med ; 22(2): 793, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34093749

RESUMEN

An increasing body of evidence indicates the involvement of microRNAs (miRNAs/miRs) in the initiation and progression of colorectal cancer (CRC). miR-296-5p was recently identified as a tumor suppressor in a variety of human cancer types; however, its function in CRC remains largely unknown. The present study demonstrated that the expression of miR-296-5p was significantly downregulated in CRC tissues and cell lines. The overexpression of miR-296-5p markedly inhibited proliferation, and induced cell cycle arrest and apoptosis in CRC cells. Bioinformatics analysis suggested that high mobility group AT-hook 1 (HMGA1) may be a target of miR-296-5p in CRC cells. Further experiments showed that miR-296-5p bound the 3'-untranslated region of HMGA1 and decreased its expression in CRC cells. HMGA1 was overexpressed in CRC tissues and was inversely correlated with the expression of miR-296-5p. The restoration of HMGA1 significantly reversed the inhibitory effect of miR-296-5p on the proliferation of CRC cells. Overall, the findings of the present study indicate that miR-296-5p suppressed the progression of CRC, at least partially via targeting HMGA1. Thus, miR-296-5p is a potential target for novel therapies in CRC.

7.
Transl Pediatr ; 10(4): 773-782, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34012827

RESUMEN

BACKGROUND: Bronchial asthma (referred to as asthma in the present study) is the most common chronic airway inflammatory disease in childhood. The present study aimed to investigate the effect of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on VDR expression, which is closely associated with asthmatic airway smooth muscle cells (ASMCs), and explored its role and mechanism in the Rho-kinase signaling pathway. METHODS: The acute asthma model was induced by ovalbumin (OVA) and pertussis bacillus, and ASMCs obtained from asthmatic rats were cultured in vitro. These cells were randomly divided into five groups: control (N) group, TNF-α (TNF) group, 1,25-(OH)2D3 (VD) group, dexamethasone (DXM) group, and 1,25-(OH)2D3 + DXM (L) group. The protein expression levels of VDR, ROCK, MLC20 and P-MLC20 were detected by western blot, and the mRNA expression levels of VDR, ROCK, MLC20 and P-MLC20 were detected by real-time quantitative PCR. RESULTS: The expression of ROCK, MLC20 and P-MLC20 in each treatment group were significantly lower, when compared to the TNF group (P<0.05), but this remained stronger than (P<0.05) or similar to (P>0.05) that in the N group. CONCLUSIONS: The regulation mechanism of 1,25-(OH)2D3 in alleviating asthma should be correlated to its regulation of the expression of related signaling molecules in the Rho-kinase signaling pathway, and this effect may be achieved by regulating the mRNA and protein expression of the VDR gene.

8.
Chem Commun (Camb) ; 56(87): 13445-13448, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33043922

RESUMEN

A CRISPR-Cas12a-based strategy is developed for sensitive microRNA sensing, in which hyperbranched rolling circle amplification and transcription are integrated for the activation of the trans-cleavage ability of Cas12a. The integrated triplex signal amplification endows the strategy with a low background and high sensitivity. This design expands the scope of the CRISPR-Cas-based sensing toolbox and shows great potential in biological and biomedical studies.


Asunto(s)
Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , Límite de Detección , MicroARNs/análisis , Transcripción Genética
9.
Anal Chem ; 92(9): 6702-6708, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32272843

RESUMEN

Current CRISPR-Cas-based nucleic acid sensing methods relying on the preassembled Cas-crRNA complexes are generally limited to the detection of protospacer-adjacent motif (PAM)-containing sequences, and nonspecific backgrounds are inevitable. Herein, we propose a new CRISPR-derived microRNA sensing mechanism based on rolling circle transcription (RCT)-unleashed self-recruiting of crRNA by Cas12a (Cas12a-SCR). In Cas12a-SCR, target microRNA can specifically trigger RCT to produce a long single-strand RNA with numerous pre-crRNA repeats, which can be trimmed and recruited by Cas12a actively. This new target-initiated, real-time producing, trimming, and self-assembling manner of Cas12a-crRNA remarkably suppresses the nonspecific background and relieves the stringent requirement of PAM site in the target sequence. Thus, the universality of the Cas12a-SCR toward different nucleic acid sequences is greatly expanded.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleasas/genética , MicroARNs/genética , Transcripción Genética/genética , Células Cultivadas , Células HEK293 , Humanos , Factores de Tiempo
10.
PLoS One ; 15(2): e0228219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32023282

RESUMEN

The protein phosphatase 2As (PP2As) play a key role in manipulating protein phosphorylation. Although a number of proteins in the latex of laticifers are phosphorylated during latex regeneration in rubber tree, information about the PP2A family is limited. In the present study, 36 members of the HbPP2A family were genome-wide identified. They were clustered into five subgroups: the subgroup HbPP2AA (4), HbPP2AB' (14), HbPP2AB'' (6), HbPP2AB55 (4), and HbPP2AC (8). The members within the same subgroup shared highly conserved gene structures and protein motifs. Most of HbPP2As possessed ethylene- and wounding-responsive cis-acting elements. The transcripts of 29 genes could be detected in latex by using published high-throughput sequencing data. Of the 29 genes, seventeen genes were significantly down-regulated while HbPP2AA1-1 and HbPP2AB55α/Bα-1were up-regulated by tapping. Of the 17 genes, 14 genes were further significantly down-regulated by ethrel application. The down-regulated expression of a large number of HbPP2As may attribute to the enhanced phosphorylation of the proteins in latex from the tapped trees and the trees treated with ethrel application.


Asunto(s)
Genoma de Planta , Hevea/genética , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2/metabolismo , Regulación de la Expresión Génica de las Plantas , Hevea/enzimología , Látex/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteína Fosfatasa 2/clasificación , Proteína Fosfatasa 2/genética , Elementos Reguladores de la Transcripción/genética
11.
Talanta ; 211: 120704, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070604

RESUMEN

Terminal deoxynucleotidyl transferase (TdT) plays an important role in regulating a wide range of genomic processes. The sensitive and accurate detection of cellular TdT activity, particularly at the single-cell level, is highly significant for leukemia-associated biomedical and biological studies. Nevertheless, owing to the limited sensitivity of the existing TdT assays, the quantification of TdT activity at the single-cell level remains a big challenge. Herein, a simple but ultrasensitive method for assaying TdT activity is proposed based on terminal extension actuated loop-mediated isothermal amplification (TEA-LAMP). By using the TdT-induced extension product as an actuator, TdT activity is amplified twice by terminal extension and LAMP in an exponential manner and finally converted to a remarkably amplified fluorescent signal. In this study, as low as 2 × 10-8 U/µL TdT can be clearly detectable with the elegant TEA-LAMP strategy. Such an ultrahigh sensitivity enables the direct determination of TdT activity in individual single cells. In the meantime, by employing TdT as a co-factor, this strategy can also be applied to detecting other enzymes that can catalyze the DNA terminal hydroxylation. This work not only reports the up-to-now most sensitive TdT detection strategy at a single-cell level but also opens the new gate for versatile enzyme activity detection.


Asunto(s)
ADN Nucleotidilexotransferasa/metabolismo , Línea Celular Tumoral , ADN , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Análisis de la Célula Individual
12.
Anal Chem ; 92(4): 3477-3482, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31970980

RESUMEN

Quantification of site-specific 5-formylcytosine (5fC) in DNA is highly significant to better understand its biological functions. However, it is still a big challenge to precisely discriminate 5fC from cytosine (C), 5-hydroxymethylcytosine (5hmC), 5-methylcytosine (5mC), and 5-carboxycytosine (5caC) owing to their similar structures that will interfere the quantification of 5fC. To solve this issue, a novel peptide nucleic acid (PNA) clamp-assisted ligation amplification strategy coupled with a 5fC-selective chemical conversion route is employed, through which 5fC can be precisely quantified with other interfering signals completely suppressed. As a result, as low as 200 aM of site-specific 5fC-containing DNA target can be accurately determined at single-base resolution in a background-free manner.


Asunto(s)
Citosina/análogos & derivados , Citosina/análisis , ADN/química , Estructura Molecular
13.
Front Genet ; 10: 372, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118943

RESUMEN

Jasmonate signaling plays a vital role in the regulation of secondary laticifer differentiation and natural rubber biosynthesis in Hevea brasiliensis. Jasmonate ZIM-domain (JAZ) proteins are the master regulators of jasmonate signaling. Although several JAZs have been reported in the laticifer cells of H. brasiliensis, the genome-wide screening of HbJAZ members has not yet been explored. In the present study, 18 HbJAZs were identified based on the recent H. brasiliensis genome. Phylogenetic construction revealed that the HbJAZs were clustered into five subgroups and that members within the same subgroup shared highly conserved gene structures and protein motifs. Cis-element analysis of HbJAZ promoters suggested the presence of hormone, stress and development-related cis-elements. HbJAZ1.0, HbJAZ2.0, and HbJAZ5.0 interacted with CORONATINE INSENSITIVE1 (COI1) in the presence of coronatine (COR, a JA mimic). HbJAZ1.0, HbJAZ2.0, HbJAZ5.0, and HbJAZ12.0 could also interact with each other. Of the 18 HbJAZs, transcripts of 15 HbJAZs were present in the vascular cambium region except for that of HbJAZ7.0, HbJAZ8.0d, and HbJAZ13.0. Fourteen of the 15 HbJAZs were significantly up-regulated upon COR treatment. The transcripts of three genes that were absent from vascular cambium region were also absent from the latex. Among the 15 HbJAZs in the latex, the expression patterns of 13 HbJAZs were different between the tapping and ethrel treatments. Eight of the 14 COR-up-regulated HbJAZs in the vascular cambium region were also activated by tapping in latex. Of the eight tapping-activated HbJAZs, 5 HbJAZs were repressed by ethrel application. Based on the computational analyses and gene expression patterns described in this study, the HbJAZ5.0 and HbJAZ10.0b may be associated with laticifer differentiation while the HbJAZ8.0b is a negative regulator for natural rubber biosynthesis in H. brasiliensis.

14.
Biosens Bioelectron ; 128: 17-22, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30616213

RESUMEN

Rolling circle amplification (RCA) is an elegant and well-recognized isothermal nucleic acid amplification mechanism that has been widely used for the detection of various kinds of genetic biomarkers. However, traditional RCA is a linear signal amplifying mechanism so that the amplification efficiency is generally not satisfactory. Herein, we rationally combine RCA with efficient loop-mediated isothermal amplification (LAMP) to establish a rapid and ultrasensitive RCA-LAMP method for the detection of microRNAs (miRNAs). In the RCA-LAMP, the target let-7a miRNA can directly template the ligation of a padlock probe to trigger RCA reaction, producing long and tandem amplification products. Only such RCA-produced long DNA repeats can act as the template to generate a lot of double stem-loop DNAs with functional sequences, which are the essential starting materials to initiate subsequent LAMP. Finally, the products of LAMP reaction, the amount of which is dependent on the initial miRNA dosage, can be fluorescently monitored in a real-time manner. Through the combination of ligation-mediated RCA with LAMP, the amplification efficiency and the detection sensitivity has been significantly improved. As a result, even 10 aM miRNA target can be clearly and accurately detectable. Despite the excellent analytical performance for miRNA analysis, compared with conventional RCA-based miRNA assays, the combination of RCA with LAMP does not introduce any additional reaction steps or sample transfer operations. Both the RCA and LAMP are fulfilled in a single step. Therefore, this facile and ultrasensitive RCA-LAMP assay provides a new promising tool for miRNA analysis and can be extended to the detection of various kinds of genetic biomarkers.


Asunto(s)
Técnicas Biosensibles , MicroARNs/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico , Bioensayo , Límite de Detección , MicroARNs/química , MicroARNs/genética
15.
BMC Plant Biol ; 19(1): 8, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616545

RESUMEN

BACKGROUND: Although the wound response of plants has been extensively studied, little is known of the rapid occlusion of wounded cell itself. The laticifer in rubber tree is a specific type of tissue for natural rubber biosynthesis and storage. In natural rubber production, tapping is used to harvest the latex which flows out from the severed laticifer in the bark. Therefore, study of the rapid wound-occlusion of severed laticifer cells is important for understanding the rubber tree being protected from the continuously mechanical wounding. RESULTS: Using cytological and biochemical techniques, we revealed a biochemical mechanism for the rapid occlusion of severed laticifer cells. A protein-network appeared rapidly after tapping and accumulated gradually along with the latex loss at the severed site of laticifer cells. Triple immunofluorescence histochemical localization showed that the primary components of the protein-network were chitinase, ß-1,3-glucanase and hevein together with pro-hevein (ProH) and its carboxyl-terminal part. Molecular sieve chromatography showed that the physical interactions among these proteins occurred under the condition of neutral pH. The interaction of ß-1,3-glucanase respectively with hevein, chitinase and ProH was testified by surface plasmon resonance (SPR). The interaction between actin and ß-1,3-glucanase out of the protein inclusions of lutoids was revealed by pull-down. This interaction was pharmacologically verified by cytochalasin B-caused significant prolongation of the duration of latex flow in the field. CONCLUSIONS: The formation of protein-network by interactions of the proteins with anti-pathogen activity released from lutoids and accumulation of protein-network by binding to the cytoskeleton are crucial for the rapid occlusion of laticifer cells in rubber tree. The protein-network at the wounded site of laticifer cells provides not only a physical barrier but also a biochemical barrier to protect the wounded laticifer cells from pathogen invasion.


Asunto(s)
Hevea/fisiología , Corteza de la Planta/fisiología , Proteínas de Plantas/fisiología , Western Blotting , Cromatografía en Gel , Producción de Cultivos , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Hevea/citología , Hevea/metabolismo , Hevea/ultraestructura , Microscopía Electrónica , Corteza de la Planta/citología , Corteza de la Planta/metabolismo , Corteza de la Planta/ultraestructura , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Goma/metabolismo , Resonancia por Plasmón de Superficie
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(8): 629-634, 2018 Aug.
Artículo en Chino | MEDLINE | ID: mdl-30111471

RESUMEN

OBJECTIVE: To study the clinical features of macrolide-resistant Mycoplasma pneumoniae pneumonia and its treatment regimens in children. METHODS: The samples of throat swab or bronchoalveolar lavage fluid were collected from 136 children with Mycoplasma pneumoniae pneumonia. Quantitative real-time PCR was used to detect 2063/2064 A:G mutation in 23S rRNA, and according to such results, the children were divided into drug-resistance group with 81 children and sensitive group with 55 children. The two groups were compared in terms of age composition, respiratory symptoms, extrapulmonary complications, laboratory markers, imaging changes, treatment regimens, and length of hospital stay. RESULTS: Compared with the sensitive group, the drug-resistance group had significantly longer duration of pyrexia and severe fever, a significantly higher percentage of children with reduced blood oxygen saturation, and significantly higher levels of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) (P<0.05). The conventional azithromycin treatment had a good clinical effect in the sensitive group, while corticosteroid therapy was usually needed in the drug-resistance group. CONCLUSIONS: Macrolide-resistant Mycoplasma pneumoniae infection cannot be identified based on a single clinical feature, but prolonged duration of pyrexia and severe fever, reduced blood oxygen saturation, and increased ALT and LDH can suggest the presence of this disease. Azithromycin combined with glucocorticoids may be a good treatment regimen for children with macrolide-resistant Mycoplasma pneumoniae pneumonia.


Asunto(s)
Antibacterianos/administración & dosificación , Farmacorresistencia Bacteriana , Macrólidos/administración & dosificación , Mycoplasma pneumoniae/efectos de los fármacos , Neumonía por Mycoplasma/tratamiento farmacológico , Adolescente , Azitromicina/administración & dosificación , Niño , Preescolar , Femenino , Fiebre/etiología , Humanos , Lactante , Pulmón/microbiología , Pulmón/fisiopatología , Masculino , Mutación , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/fisiología , Neumonía por Mycoplasma/complicaciones , Neumonía por Mycoplasma/microbiología , Neumonía por Mycoplasma/fisiopatología , Resultado del Tratamiento
17.
J Exp Bot ; 69(15): 3559-3571, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29726901

RESUMEN

Rubber trees are the world's major source of natural rubber. Rubber-containing latex is obtained from the laticifer cells of the rubber tree (Hevea brasiliensis) via regular tapping. Rubber biosynthesis is a typical isoprenoid metabolic process in the laticifer cells; however, little is known about the positive feedback regulation caused by the loss of latex that occurs through tapping. In this study, we demonstrate the crucial role of jasmonate signalling in this feedback regulation. The endogenous levels of jasmonate, the expression levels of rubber biosynthesis-related genes, and the efficiency of in vitro rubber biosynthesis were found to be significantly higher in laticifer cells of regularly tapped trees than those of virgin (i.e. untapped) trees. Application of methyl jasmonate had similar effects to latex harvesting in up-regulating the rubber biosynthesis-related genes and enhancing rubber biosynthesis. The specific jasmonate signalling module in laticifer cells was identified as COI1-JAZ3-MYC2. Its activation was associated with enhanced rubber biosynthesis via up-regulation of the expression of a farnesyl pyrophosphate synthase gene and a small rubber particle protein gene. The increase in the corresponding proteins, especially that of farnesyl pyrophosphate synthase, probably contributes to the increased efficiency of rubber biosynthesis. To our knowledge, this is the first study to reveal a jasmonate signalling pathway in the regulation of rubber biosynthesis in laticifer cells. The identification of the specific jasmonate signalling module in the laticifer cells of the rubber tree may provide a basis for genetic improvement of rubber yield potential.


Asunto(s)
Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hevea/fisiología , Látex/biosíntesis , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Genes Reporteros , Hevea/genética , Filogenia , Técnicas del Sistema de Dos Híbridos
18.
Chem Sci ; 9(5): 1344-1351, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29675182

RESUMEN

Sensitive and accurate detection of site-specific DNA methylation is of critical significance for early diagnosis of human diseases, especially cancers. Herein, for the first time we employ a novel methylation-dependent restriction endonuclease GlaI to detect site-specific DNA methylation in a highly specific and sensitive way by coupling with isothermal exponential amplification reaction (EXPAR). GlaI can only cut the methylated target site with excellent selectivity but leave the unmethylated DNA intact. Then the newly exposed end fragments of methylated DNA can trigger EXPAR for highly efficient signal amplification while the intact unmethylated DNA will not initiate EXPAR at all. As such, only the methylated DNA is quantitatively and faithfully reflected by the real-time fluorescence signal of the GlaI-EXPAR system, and the potential false positive interference from unmethylated DNA can be effectively eliminated. Therefore, by integrating the unique features of GlaI for highly specific methylation discrimination and EXPAR for rapid and powerful signal amplification, the elegant GlaI-EXPAR assay allows the direct quantification of methylated DNA with ultrahigh sensitivity and accuracy. The detection limit of methylated DNA target has been pushed down to the aM level and the whole detection process of GlaI-EXPAR can be accomplished within a short time of 2 h. More importantly, ultrahigh specificity is achieved and as low as 0.01% methylated DNA can be clearly identified in the presence of a large excess of unmethylated DNA. This GlaI-EXPAR is also demonstrated to be capable of determining site-specific DNA methylations in real genomic DNA samples. Sharing the distinct advantages of ultrahigh sensitivity, outstanding specificity and facile operation, this new GlaI-EXPAR strategy may provide a robust and reliable platform for the detection of site-specific DNA methylations with low abundances.

19.
Sci Rep ; 8(1): 4931, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563566

RESUMEN

Two contrasting cold response rubber tree clones, the cold-resistant '93-114' and cold-sensitive 'Reken501', were subject to a global transcriptome response assessing via high-throughput RNA-seq technique and comprehensive bioinformatics analysis using the referenced rubber tree genome with the purpose of exploring the potential molecular cues underlying the tolerance of rubber trees to cold stress. As a result, a total of 1919 genes had significantly higher expression, while 2929 genes had significantly lower expression in '93-114' than in 'Reken501' without cold stress. Upon cold stress, the numbers of genes with significantly higher expression decreased to 1501 at 1 h treatment and to 1285 at 24 h treatment in '93-114' than that of 'Reken501', conversely, the numbers of genes with significantly lower expression increased to 7567 at 1 h treatment and to 5482 at 24 h treatment. Functional annotation of the differentially expressed genes between '93-114' and 'Reken501' suggests that down-regulation of auxin and ethylene signaling and activation of heat shock module and ROS scavengers is a primary strategy for H. brasiliensis to cope with cold stress. Our identified vital differentially expressed genes may be beneficial for elucidation of the molecular mechanisms underlying cold tolerance and for genetic improvement of H. brasiliensis clones.


Asunto(s)
Aclimatación/fisiología , Frío , Depuradores de Radicales Libres/metabolismo , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/fisiología , Hevea , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología , Hevea/genética , Hevea/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Front Plant Sci ; 8: 1904, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163621

RESUMEN

Latex exploitation enhances latex regeneration in rubber trees. The latex exploitation-caused latex flow lasts from 10 min to a few hours, which is convenient for exploring the transcript profiling of latex metabolism-related genes at the different stages of latex flow. In the present study, the expression pattern of 62 latex metabolism-related genes involved in water transportation, carbohydrate metabolism, natural rubber biosynthesis, hormone signaling, ROS generation and scavenging, and latex coagulum across three stages of latex flow between rubber tree clones CATAS7-33-97 and CATAS8-79 were comparatively analyzed by quantitative real-time PCR. The two clones show differences in latex regeneration and have a different duration of latex flow. The results showed that the expression levels of 38 genes were significantly higher in CATAS8-79 latex than in CATAS7-33-97 during latex regeneration, while 45 genes had a notably higher expression level in CATAS8-79 latex during latex flow. Together with the activation of the MEP pathway and jasmonate pathway in CATAS8-79 latex, HbPIP1;3, HbPIP1;4, HbSUT3, HbSus3, HbHMGS1-2, HbMK should contribute to the high latex regeneration ability. The up-regulation of ethylene signaling and Hb44KD and the down-regulation of latex coagulation-related genes in CATAS8-79 latex might contribute to its longer latex flow duration. This study provides some cues for revealing the regulation of latex metabolism in rubber trees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...