Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
Bioresour Technol ; : 131082, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972432

RESUMEN

Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.

2.
Sci Data ; 11(1): 657, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906866

RESUMEN

Broomcorn millet (Panicum miliaceum L.), known for its traits of drought resistance, adaptability to poor soil, short growth period, and high photosynthetic efficiency as a C4 plant, represents one of the earliest domesticated crops globally. This study reports the telomere-to-telomere (T2T) gap-free reference genome for broomcorn millet (AJ8) using PacBio high-fidelity (HiFi) long reads, Oxford Nanopore long-read technologies and high-throughput chromosome conformation capture (Hi-C) sequencing data. The size of AJ8 genome was approximately 834.7 Mb, anchored onto 18 pseudo-chromosomes. Notably, 18 centromeres and 36 telomeres were obtained. The assembled genome showed high quality in terms of completeness (BUSCO score: 99.6%, QV: 61.7, LAI value: 20.4). In addition, 63,678 protein-coding genes and 433.8 Mb (~52.0%) repetitive sequences were identified. The complete reference genome for broomcorn millet provides a valuable resource for genetic studies and breeding of this important cereal crop.


Asunto(s)
Genoma de Planta , Panicum , Panicum/genética , Telómero/genética , Cromosomas de las Plantas
3.
Immunology ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934051

RESUMEN

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.

4.
Animals (Basel) ; 14(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929333

RESUMEN

In most current farm operations, lactating sows need to overcome reproductive and environmental stresses that have resulted in poor sow production performance and piglet growth. Therefore, this study aimed to investigate the effects of in-feed supplementation of monosodium glutamate (MSG) in sows during late gestation lactation in regard to litter performance. The study subjects were 12 multi-parity sows (Landrace × Large White), farrowing sows with an average parity of four (three with three parities, seven with four parities, and two with five parities). They were randomly divided into the following two diet groups: the basal diet as a control (CON) group based on corn and soybean meal; and the basal diet + 2% MSG group. The experimental time ranged from 109 days before delivery to 21 days after delivery. There were six sows in each group, and each sow served as the experimental unit. There were no significant differences (p > 0.05) in body weight (BW), back fat (BF) thickness and estrus interval between sows supplemented with 2% MSG in their diets before and after farrowing and during weaning (p > 0.05). However, MSG-treated sows tended to increase BW loss at farrowing more than the CON group (p = 0.093) but lost less weight during lactation than the CON group (p = 0.019). There were no significant differences in the body condition scores (BCSs) and BF loss of the two groups of sows before and after farrowing and at weaning (p > 0.05). There was no significant difference in the weight of newborn piglets between the two groups of sows (p > 0.05). The weaning weight (p = 0.020) and average daily gain (ADG) (p = 0.045) of suckling piglets were higher in the MSG treated group compared to the CON group. The daily milk production of sows in the MSG treatment group was higher compared to the CON group (p = 0.045). The protein concentration of milk at week 3 (p = 0.060) and fat concentration of milk at week 5 (p = 0.095) of the MSG-supplemented sows tended to increase more than the CON group. In summary, the dietary inclusion of MSG supplementation had a beneficial effect on the late gestating sows and their piglet's growth and milk production. Our research has shown that the addition of 2% MSG in late gestation and lactation diet would be beneficial for both sow and piglet production.

5.
Front Vet Sci ; 11: 1375948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751804

RESUMEN

Chaphamaparvovirus carnivoran1 (canine Chaphamaparvovirus, also known as Cachavirus [CachaV]) is a novel parvovirus first reported in dog feces collected from the United States in 2017 and China in 2019. To continuously track its infection and evolution status, 276 canine anal swabs were obtained from pet hospitals in central, northern, and eastern China between 2021 and 2023 and screened via polymerase chain reaction; subsequently, a systematic study was conducted. Of these samples, nine (3.3%) were positive for CachaV. Using polymerase chain reaction, whole genome sequences of the nine CachaV-positive strains were amplified. The NS1 amino acid sequence identity between CachaV strains from China and other countries was 96.23-99.85%, whereas the VP1 protein sequence identity was 95.83-100%. CHN230521 demonstrated the highest identity for NS1 amino acids (99.85%) and VP1 amino acids (100%) with NWT-W88 and CP-T015. According to the model prediction of CHN220916-VP1 protein, Met64Thr, Thr107Ala, and Phe131Ser mutations may cause tertiary structural changes in VP1 protein. Interestingly, each of the nine CachaV strains harbored the same site mutations in NS1 (Ser252Cys, Gly253Leu, and Gly254Thr). Although no explicit recombination events were predicted, the clustering and branching of the phylogenetic tree were complicated. Based on the evolution trees for VP1 and NS1, the nine CachaV strains identified from 2021 to 2023 were closely related to those identified in gray wolves and cats. This study may be beneficial for evaluating the prevalence of CachaVs in China, thereby understanding the evolution trend of CachaVs.

6.
Int J Biol Macromol ; : 132755, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821295

RESUMEN

Interferon-induced transmembrane 3 (IFITM3) is a membrane-associated protein that exhibits antiviral activities against a wide range of viruses through interactions with other cellular and viral proteins. However, knowledge of the mechanisms of IFITM3 in Porcine deltacoronavirus (PDCoV) infection has been lacking. In this study, we demonstrate that IFN-α treatment induces the upregulation of IFITM3 activity and thus attenuates PDCoV infection. PDCoV replication is inhibited in a dose-dependent manner by IFITM3 overexpression. To clarify the novel roles of IFITM3 during PDCoV infection, proteins that interact with IFITM3 were screened by TAP/MS in an ST cell line stably expressing IFITM3 via a lentivirus. We identified known and novel candidate IFITM3-binding proteins and analyzed the protein complexes using GO annotation, KEGG pathway analysis, and protein interaction network analysis. A total of 362 cellular proteins associate with IFITM3 during the first 24 h post-infection. Of these proteins, the relationship between IFITM3 and Rab9a was evaluated by immunofluorescence colocalization analysis using confocal microscopy. IFITM3 partially colocalized with Rab9a and Rab9a exhibited enhanced colocalization following PDCoV infection. We also demonstrated that IFITM3 interacts specifically with Rab9a. Our results considerably expand the protein networks of IFITM3, suggesting that IFITM3 participates in multiple cellular processes during PDCoV infection.

7.
Curr Med Sci ; 44(3): 485-493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748369

RESUMEN

Intraductal papillary neoplasm of the bile duct (IPNB) is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas. These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010. In 2018, Japanese and Korean pathologists reached a consensus, classifying IPNBs into type l and type 2 IPNBs. IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis. From a molecular genetic perspective, IPNBs exhibit early genetic variations, and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs. The histological subtypes of IPNBs include gastric, intestinal, pancreaticobiliary, or oncocytic subtypes, but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin. Due to the rarity of these lesions and the absence of specific clinical and laboratory features, imaging is crucial for the preoperative diagnosis of IPNB, with local bile duct dilation and growth along the bile ducts being the main imaging features. Surgical resection remains the optimal treatment for IPNBs, but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.


Asunto(s)
Neoplasias de los Conductos Biliares , Humanos , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Carcinoma Papilar/patología , Carcinoma Papilar/genética , Masculino , Conductos Biliares Intrahepáticos/patología , Conductos Biliares/patología
8.
World J Gastrointest Surg ; 16(4): 1109-1120, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38690052

RESUMEN

BACKGROUND: The incidence of gastric cancer has significantly increased in recent years. Surgical resection is the main treatment, but the method of digestive tract reconstruction after gastric cancer surgery remains controversial. In the current study, we sought to explore a reasonable method of digestive tract reconstruction and improve the quality of life and nutritional status of patients after surgery. To this end, we statistically analyzed the clinical results of patients with gastric cancer who underwent jejunal interposition double-tract reconstruction (DTR) and esophageal jejunum Roux-en-Y reconstruction (RY). AIM: To explore the application effect of DTR in total laparoscopic radical total gastrectomy (TLTG) and evaluate its safety and efficacy. METHODS: We collected the relevant data of 77 patients who underwent TLTG at the Fourth Hospital of Hebei Medical University from October 2021 to January 2023. Among them, 35 cases were treated with DTR, and the remaining 42 cases were treated with traditional RY. After 1:1 propensity score matching, the cases were grouped into 31 cases per group, with evenly distributed data. The clinical characteristics and short- and long-term clinical outcomes of the two groups were statistically analyzed. RESULTS: The two groups showed no significant differences in basic data, intraoperative blood loss, number of lymph node dissections, first defecation time after operation, postoperative hospital stay, postoperative complications, and laboratory examination results on the 1st, 3rd, and 5th days after operation. The operation time of the DTR group was longer than that of the RY group [(307.58 ± 65.14) min vs (272.45 ± 62.09) min, P = 0.016], but the first intake of liquid food in the DTR group was shorter than that in the RY group [(4.45 ± 1.18) d vs (6.0 ± 5.18) d, P = 0.028]. The incidence of reflux heartburn (Visick grade) and postoperative gallbladder disease in the DTR group was lower than that in the RY group (P = 0.033 and P = 0.038). Although there was no significant difference in body weight, hemoglobin, prealbumin, and albumin between the two groups at 1,3 and 6 months after surgery, the diet of patients in the DTR group was better than that in the RY group (P = 0.031). CONCLUSION: The clinical effect of DTR in TLTG is better than that of RY, indicating that it is a more valuable digestive tract reconstruction method in laparoscopic gastric cancer surgery.

9.
Science ; 384(6697): adm9190, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38662913

RESUMEN

Gasdermins (GSDMs) are pore-forming proteins that execute pyroptosis for immune defense. GSDMs are two-domain proteins activated by proteolytic removal of the inhibitory domain. In this work, we report two types of cleavage-independent GSDM activation. First, TrichoGSDM, a pore-forming domain-only protein from the basal metazoan Trichoplax adhaerens, is a disulfides-linked autoinhibited dimer activated by reduction of the disulfides. The cryo-electron microscopy (cryo-EM) structure illustrates the assembly mechanism for the 44-mer TrichoGSDM pore. Second, RCD-1-1 and RCD-1-2, encoded by the polymorphic regulator of cell death-1 (rcd-1) gene in filamentous fungus Neurospora crassa, are also pore-forming domain-only GSDMs. RCD-1-1 and RCD-1-2, when encountering each other, form pores and cause pyroptosis, underlying allorecognition in Neurospora. The cryo-EM structure reveals a pore of 11 RCD-1-1/RCD-1-2 heterodimers and a heterodimerization-triggered pore assembly mechanism. This study shows mechanistic diversities in GSDM activation and indicates versatile functions of GSDMs.


Asunto(s)
Proteínas Fúngicas , Gasderminas , Neurospora crassa , Placozoa , Multimerización de Proteína , Animales , Microscopía por Crioelectrón , Disulfuros/química , Proteínas Fúngicas/química , Gasderminas/química , Modelos Moleculares , Dominios Proteicos , Proteolisis , Piroptosis
10.
Acta Neurol Belg ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669003

RESUMEN

BACKGROUND: Hypertension is a recognized risk factor for Parkinson's disease (PD). The renin-angiotensin system (RAS) inhibitors are widely used to treat hypertension. However, the association of RAS inhibitor use with PD has still been an area of controversy. METHODS: Thus, we conducted a meta-analysis to investigate the relationship between RAS inhibitor use and PD. PUBMED and EMBASE databases were searched for articles published up to Oct 2023. All studies that examined the relationship between RAS inhibitor use and the incidence of PD were included. RESULTS: Seven studies with total 3,495,218 individuals met our inclusion criteria for this meta-analysis. Overall, RAS inhibitor use was associated with a reduction in PD risk (OR = 0.88, 95%CI = 0.79-0.98) compared with the controls. When restricted the analysis to individuals with RAS inhibitor use indication, RAS inhibitor exposure was also associated with a decreased risk of PD (OR = 0.76, 95%CI = 0.62-0.92). Pooled results of cohort studies also did support a protective role of angiotensin converting enzyme inhibitors (ACEIs) (OR = 0.97, 95%CI = 0.89-1.07) users and angiotensin II receptor blockers (ARBs) (OR = 0.8, 95%CI = 0.63-1.02) in PD. CONCLUSION: Overall, RAS inhibitor use as a class is associated with a reduction in PD risk. However, the findings of ACEIs and ARBs may be limited by small sample size. Future well-designed studies considering the classification by inhibitor type, duration, dose, or property of BBB penetration of RAS inhibitors are needed to clarify the contribution of these exposure parameters on the risk of PD.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38603468

RESUMEN

Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.

12.
Nano Lett ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603798

RESUMEN

The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.

13.
Front Oncol ; 14: 1376502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628672

RESUMEN

Purpose: Dysregulated expression of microRNA (miRNAs) in lung cancer has been wildly reported. The clinicopathologic significance of miR-9-5p in non-small-cell lung cancer (NSCLC) patients and its effect on NSCLC progression were explored in this study. Patients and methods: A total of 76 NSCLC patients were included. miR-9-5p expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, in vitro experiments including cell growth curve assays, colony formation assays, and transwell migration assays were performed. Further clinicopathological and prognostic values were explored using bioinformatics analysis of the TCGA database. Results: miR-9-5p expression was significantly increased in tumor tissues (both P < 0.0001). miR-9-5p expression was relatively higher in larger tumors (P = 0.0327) and in lung squamous carcinoma (LUSC) (P = 0. 0143). In addition, miR-9-5p was significantly upregulated in the normal lung tissues of cigarette smokers (P = 0.0099). In vitro, miR-9-5p was correlated with cell proliferation and migration. After that, bioinformatics analysis of the TCGA database indicated that miR-9-5p was correlated with tumor size (P = 0.0022), lymphatic metastasis (P = 0.0141), LUSC (P < 0.0001), and smoking history (P < 0.0001). Finally, a prognostic study indicated high miR-9-5p expression was correlated with poor prognosis in LUAD (P = 0.0121). Conclusion: Upregulation of miR-9-5p may have an oncogenic effect in NSCLC and may be related to smoking. The conclusion of this study may help find new prognostic and therapeutic targets for NSCLC and the exploration of the relationship between smoking and lung cancer.

14.
Anal Chim Acta ; 1298: 342400, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462348

RESUMEN

BACKGROUND: Extracellular ATP is involved in disorders that cause inflammation of the airways and cough, thus limiting its release has therapeutic benefits. Standard luminescence-based ATP assays measure levels indirectly through enzyme degradation and do not provide a simultaneous readout for other nucleotide analogues. Conversely, mass spectrometry can provide direct ATP measurements, however, common RPLC and HILIC methods face issues because these molecules are unstable, metal-sensitive analytes which are often poorly retained. These difficulties have traditionally been overcome using passivation or ion-pairing chromatography, but these approaches can be problematic for LC systems. As a result, more effective analytical methods are needed. RESULTS: Here, we introduce a new application that uses microfluidic chip-based capillary zone electrophoresis-mass spectrometry (µCZE-MS) to measure ATP and its analogues simultaneously in biofluids. The commercially available ZipChip Interface and a High-Resolution Bare-glass microchip (ZipChip, HRB, 908 Devices Inc.) coupled to a Thermo Scientific Tribrid Orbitrap, were successfully used to separate and detect various nucleotide standards, as well as ATP, ADP, AMP, and adenosine in plasma and BALF obtained from naïve Brown Norway rats. The findings demonstrate that this approach can rapidly and directly detect ATP and its related nucleotide analogues, while also highlighting the need to preserve these molecules in biofluids with chelators like EDTA. In addition, we demonstrate that this µCZE-MS method is also suitable for detecting a variety of metabolites, revealing additional potential future applications. SIGNIFICANCE: This innovative µCZE-MS approach provides a robust new tool to directly measure ATP and other nucleotide analogues in biofluids. This can enable the study of eATP in human disease and potentially contribute to the creation of ATP-targeting therapies for airway illnesses.


Asunto(s)
Microfluídica , Nucleótidos , Polifosfatos , Ratas , Animales , Humanos , Adenosina Trifosfato/metabolismo , Espectrometría de Masas/métodos , Adenosina , Electroforesis Capilar/métodos
15.
IEEE Trans Med Imaging ; PP2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536679

RESUMEN

Multi-frequency electrical impedance tomography (mfEIT) offers a nondestructive imaging technology that reconstructs the distribution of electrical characteristics within a subject based on the impedance spectral differences among biological tissues. However, the technology faces challenges in imaging multi-class lesion targets when the conductivity of background tissues is frequency-dependent. To address these issues, we propose a spatial-frequency cross-fusion network (SFCF-Net) imaging algorithm, built on a multi-path fusion structure. This algorithm uses multi-path structures and hyper-dense connections to capture both spatial and frequency correlations between multi-frequency conductivity images, which achieves differential imaging for lesion targets of multiple categories through cross-fusion of information. According to both simulation and physical experiment results, the proposed SFCF-Net algorithm shows an excellent performance in terms of lesion imaging and category discrimination compared to the weighted frequency-difference, U-Net, and MMV-Net algorithms. The proposed algorithm enhances the ability of mfEIT to simultaneously obtain both structural and spectral information from the tissue being examined and improves the accuracy and reliability of mfEIT, opening new avenues for its application in clinical diagnostics and treatment monitoring.

16.
BMC Nephrol ; 25(1): 72, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413872

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) and atherosclerosis (AS) are prevalent and severe complications associated with diabetes, exhibiting lesions in the basement membrane, an essential component found within the glomerulus, tubules, and arteries. These lesions contribute significantly to the progression of both diseases, however, the precise underlying mechanisms, as well as any potential shared pathogenic processes between them, remain elusive. METHODS: Our study analyzed transcriptomic profiles from DN and AS patients, sourced from the Gene Expression Omnibus database. A combination of integrated bioinformatics approaches and machine learning models were deployed to identify crucial genes connected to basement membrane lesions in both conditions. The role of integrin subunit alpha M (ITGAM) was further explored using immune infiltration analysis and genetic correlation studies. Single-cell sequencing analysis was employed to delineate the expression of ITGAM across different cell types within DN and AS tissues. RESULTS: Our analyses identified ITGAM as a key gene involved in basement membrane alterations and revealed its primary expression within macrophages in both DN and AS. ITGAM was significantly correlated with tissue immune infiltration within these diseases. Furthermore, the expression of genes encoding core components of the basement membrane was influenced by the expression level of ITGAM. CONCLUSION: Our findings suggest that macrophages may contribute to basement membrane lesions in DN and AS through the action of ITGAM. Moreover, therapeutic strategies that target ITGAM may offer potential avenues to mitigate basement membrane lesions in these two diabetes-related complications.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/patología , Membrana Basal/metabolismo , Glomérulos Renales/patología , Aterosclerosis/complicaciones , Macrófagos/metabolismo , Diabetes Mellitus/metabolismo , Antígeno CD11b/metabolismo
17.
Nat Commun ; 15(1): 1267, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341421

RESUMEN

Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 µmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.

18.
World J Clin Cases ; 12(1): 217-223, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38292640

RESUMEN

BACKGROUND: Addison's disease (AD) is a rare but potentially fatal disease in Western countries, which can easily be misdiagnosed at an early stage. Severe adrenal tuberculosis (TB) may lead to depression in patients. CASE SUMMARY: We report a case of primary adrenal insufficiency secondary to adrenal TB with TB in the lungs and skin in a 48-year-old woman. The patient was misdiagnosed with depression because of her depressed mood. She had hyperpigmentation of the skin, nails, mouth, and lips. The final diagnosis was adrenal TB that resulted in the insufficient secretion of adrenocortical hormone. Adrenocortical hormone test, skin biopsy, T cell spot test of TB, and adrenal computed tomography scan were used to confirm the diagnosis. The patient's condition improved after hormone replacement therapy and TB treatment. CONCLUSION: Given the current status of TB in high-burden countries, outpatient doctors should be aware of and pay attention to TB and understand the early symptoms of AD.

19.
J Hazard Mater ; 465: 133439, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38218035

RESUMEN

Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.


Asunto(s)
Dimetilaminas , Contaminantes Ambientales , Glucuronosiltransferasa , Humanos , Colorantes Fluorescentes , Uridina , Simulación del Acoplamiento Molecular
20.
Opt Express ; 32(1): 785-794, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175098

RESUMEN

Cavity optomechanical (COM) entanglement, playing an essential role in building quantum networks and enhancing quantum sensors, is usually weak and easily destroyed by noises. As feasible and effective ways to overcome this obstacle, optical or mechanical parametric modulations have been used to improve the quality of quantum squeezing or entanglement in various COM systems. However, the possibility of combining these powerful means to enhance COM entanglement has yet to be explored. Here, we fill this gap by studying a COM system containing an intra-cavity optical parametric amplifier (OPA), driven optically and mechanically. By tuning the relative strength and the frequency mismatch of optical and mechanical driving fields, we find that constructive interference can emerge and significantly improve the strength of COM entanglement and its robustness to thermal noises. This work sheds what we believe to be a new light on preparing and protecting quantum states with multi-field driven COM systems for diverse applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...