Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 80(5): 753-763, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244845

RESUMEN

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Asunto(s)
Hiperplasia Nodular Focal , Hepatopatías , Humanos , Ratones , Animales , Regeneración Hepática/fisiología , Bazo , Factor de Crecimiento Transformador beta/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factores de Crecimiento Transformadores/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
2.
Adv Sci (Weinh) ; 11(6): e2305913, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059822

RESUMEN

Surgical removal of the thyroid gland (TG) for treating thyroid disorders leaves the patients on lifelong hormone replacement that partially compensates the physiological needs, but regenerating TG is challenging. Here, an approach is reported to regenerate TG within the spleen for fully restoring the thyroid's functions in mice, by transplanting thyroid tissue blocks to the spleen. Within 48 h, the transplanted tissue efficiently revascularizes, forming thyroid follicles similar to the native gland after 4 weeks. Structurally, the ectopically generated thyroid integrates with the surrounding splenic tissue while maintaining its integrity, separate from the lymphatic tissue. Functionally, it fully restores the native functions of the TG in hormone regulation in response to physiological stimuli, outperforming the established method of oral levothyroxine therapy in maintaining systemic homeostasis. The study demonstrates the full restoration of thyroid functions post-thyroidectomy by intrasplenic TG regeneration, providing fresh insights for designing novel therapies for thyroid-related disorders.


Asunto(s)
Neoplasias de la Tiroides , Tiroidectomía , Humanos , Animales , Ratones , Tiroidectomía/métodos , Neoplasias de la Tiroides/cirugía , Bazo/cirugía , Regeneración , Hormonas
3.
Sci Rep ; 13(1): 21922, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38081848

RESUMEN

Expansion microscopy, whereby the relative positions of biomolecules are physically increased via hydrogel expansion, can be used to reveal ultrafine structures of cells under a conventional microscope. Despite its utility for achieving super-resolution imaging, expansion microscopy suffers a major drawback, namely reduced fluorescence signals caused by excessive proteolysis and swelling effects. This caveat results in a lower photon budget and disfavors fluorescence imaging over a large field of view that can cover an entire expanded cell, especially in 3D. In addition, the complex procedures and specialized reagents of expansion microscopy hinder its popularization. Here, we modify expansion microscopy by deploying trypsin digestion to reduce protein loss and tyramide signal amplification to enhance fluorescence signal for point-scanning-based imaging. We name our new methodology TT-ExM to indicate dual trypsin and tyramide treatments. TT-ExM may be applied for both antibody and lipid staining. TT-ExM displayed enhanced protein retention for endoplasmic reticulum and mitochondrial markers in COS-7 cell cultures. Importantly, TT-ExM-based lipid staining clearly revealed the complex 3D membrane structures in entire expanded cells. Through combined lipid and DNA staining, our TT-ExM methodology highlighted mitochondria by revealing their DNA and membrane structures in cytoplasm, as well as the lipid-rich structures formed via phase separation in nuclei at interphase. We also observed lipid-rich chromosome matrices in the mitotic cells. These high-quality 3D images demonstrate the practicality of TT-ExM. Thus, readily available reagents can be deployed in TT-ExM to significantly enhance fluorescence signals and generate high-quality and ultrafine-resolution images under confocal microscopy.


Asunto(s)
Imagenología Tridimensional , Proteínas , Tripsina , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Indicadores y Reactivos , ADN , Lípidos
5.
Biomolecules ; 13(3)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36979456

RESUMEN

Epidemiological evidence suggests that kava (Piper methysticum Forst) drinks may reduce the risk of cancer in South Pacific Island smokers. However, little is known about the anti-carcinogenic effects of kava on tobacco smoking-related bladder cancer and its underlying mechanisms. Here we show that dietary feeding of kawain (a major active component in kava root extracts) to mice either before or after hydroxy butyl(butyl) nitrosamine (OH-BBN) carcinogen exposure slows down urinary bladder carcinogenesis and prolongs the survival of the OH-BBN-exposed mice. OH-BBN-induced bladder tumors exhibit significantly increased expression of lysine-specific demethylase 1 (LSD1), accompanied by decreased levels of H3K4 mono-methylation compared to normal bladder epithelium, whereas dietary kawain reverses the effects of OH-BBN on H3K4 mono-methylation. Human bladder cancer tumor tissues at different pathological grades also show significantly increased expression of LSD1 and decreased levels of H3K4 mono-methylation compared to normal urothelium. In addition, kava root extracts and the kavalactones kawain and methysticin all increase the levels of H3K4 mono- and di-methylation, leading to inhibitory effects on cell migration. Taken together, our results suggest that modification of histone lysine methylation may represent a new approach to bladder cancer prevention and treatment and that kavalactones may be promising agents for bladder cancer interception in both current and former smokers.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Ratones , Humanos , Animales , Regulación hacia Arriba , Lisina , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/prevención & control , Carcinogénesis , Epigénesis Genética , Histona Demetilasas
6.
Int J Biochem Cell Biol ; 154: 106340, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442734

RESUMEN

The ability to observe biological nanostructures forms a vital step in understanding their functions. Thanks to the invention of expansion microscopy (ExM) technology, super-resolution features of biological samples can now be easily visualized with conventional light microscopies. However, when the sample is physically expanded, the demand for deep and precise 3D imaging increases. Lattice lightsheet microscopy (LLSM), which utilizes a planar illumination that is confined within the imaging depth of high numerical aperture (NA=1.1) detection objective, fulfils such requirements. In addition, optical tiling could be implemented to increase the field of view (FoV) by moving the lightsheet without mechanically moving the samples or the objective for high-precision 3D imaging. In this review article, we will explain the principle of the tiling lattice lightsheet microscopy (tLLSM), which combines optical tiling and lattice lightsheet, and discuss the applications of tLLSM in ExM.


Asunto(s)
Microscopía , Microscopía/métodos
7.
Sci Adv ; 8(27): eabo2431, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35857470

RESUMEN

Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.

8.
Elife ; 112022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35437145

RESUMEN

Although fine particulate matter (FPM) in air pollutants and tobacco smoke is recognized as a strong carcinogen and global threat to public health, its biological mechanism for inducing lung cancer remains unclear. Here, by investigating FPM's bioactivities in lung carcinoma mice models, we discover that these particles promote lung tumor progression by inducing aberrant thickening of tissue matrix and hampering migration of antitumor immunocytes. Upon inhalation into lung tissue, these FPM particles abundantly adsorb peroxidasin (PXDN) - an enzyme mediating type IV collagen (Col IV) crosslinking - onto their surface. The adsorbed PXDN exerts abnormally high activity to crosslink Col IV via increasing the formation of sulfilimine bonds at the NC1 domain, leading to an overly dense matrix in the lung tissue. This disordered structure decreases the mobility of cytotoxic CD8+ T lymphocytes into the lung and consequently impairs the local immune surveillance, enabling the flourishing of nascent tumor cells. Meanwhile, inhibiting the activity of PXDN abolishes the tumor-promoting effect of FPM, indicating the key impact of aberrant PXDN activity on the tumorigenic process. In summary, our finding elucidates a new mechanism for FPM-induced lung tumorigenesis and identifies PXDN as a potential target for treatment or prevention of the FPM-relevant biological risks.


Asunto(s)
Contaminación del Aire , Neoplasias Pulmonares , Animales , Proteínas de la Matriz Extracelular , Neoplasias Pulmonares/inducido químicamente , Ratones , Monitorización Inmunológica , Peroxidasa , Peroxidasina
9.
Discoveries (Craiova) ; 9(3): e133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34849398

RESUMEN

Macro photography allows direct visualization of the enlarged whole mouse brain by a combination of lightsheet illumination and expansion microscopy with single-cell resolution.  Taking advantage of the long working distance of a camera lens, we imaged a 3.7 cm thick, transparent, fluorescently-labeled expanded brain. In order to improve 3D sectioning capability, we used lightsheet excitation confined as the depth of field of the camera lens. Using 4x sample expansion and 5x optical magnification, macro photography enables imaging of expanded whole mouse brain with an effective resolution of 300 nm, which provides the subcellular structural information at the organ level.

10.
JCI Insight ; 6(20)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499620

RESUMEN

The prevailing view is that the ClC-Ka chloride channel (mouse Clc-k1) functions in the thin ascending limb to control urine concentration, whereas the ClC-Kb channel (mouse Clc-k2) functions in the thick ascending limb (TAL) to control salt reabsorption. Mutations of ClC-Kb cause classic Bartter syndrome, characterized by renal salt wasting, with perinatal to adolescent onset. We studied the roles of Clc-k channels in perinatal mouse kidneys using constitutive or inducible kidney-specific gene ablation and 2D and advanced 3D imaging of optically cleared kidneys. We show that Clc-k1 and Clc-k2 were broadly expressed and colocalized in perinatal kidneys. Deletion of Clc-k1 and Clc-k2 revealed that both participated in NKCC2- and NCC-mediated NaCl reabsorption in neonatal kidneys. Embryonic deletion of Clc-k2 caused tubular injury and impaired renal medulla and TAL development. Inducible deletion of Clc-k2 beginning after medulla maturation produced mild salt wasting resulting from reduced NCC activity. Thus, both Clc-k1 and Clc-k2 contributed to salt reabsorption in TAL and distal convoluted tubule (DCT) in neonates, potentially explaining the less-severe phenotypes in classic Bartter syndrome. As opposed to the current understanding that salt wasting in adult patients with Bartter syndrome is due to Clc-k2 deficiency in adult TAL, our results suggest that it originates mainly from defects occurring in the medulla and TAL during development.


Asunto(s)
Proteínas de Transporte de Anión/deficiencia , Síndrome de Bartter/genética , Canales de Cloruro/deficiencia , Médula Renal/crecimiento & desarrollo , Animales , Femenino , Humanos , Ratones , Embarazo
11.
Appl Biochem Biotechnol ; 193(12): 4151-4171, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34519919

RESUMEN

Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.


Asunto(s)
Microbiología Industrial , Ácido Láctico/biosíntesis , Lactobacillales/crecimiento & desarrollo , Ingeniería Metabólica , Lactobacillales/genética
12.
Biomaterials ; 265: 120452, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190736

RESUMEN

Biomolecular corona formed on nanoparticles (NPs) influences the latter's in vivo biological effects. Nanomaterials with different physicochemical properties exert similar adverse effects, such as cytotoxicity, suggesting the existence of ubiquitous signals during various corona formations that mediate common and fundamental cellular events. Here, we discover the involvement of the unfolded protein response (UPR) and recruited chaperones in the corona. Specially, heat shock protein 90 kDa α class B member 1 (Hsp90ab1) is abundantly enriched in the corona, accompanied by substantial aggregation of misfolded protein on particles intracellularly. Further analysis reveals the particulate matter 2.5 (PM2.5) and metal-containing particles are more capable of denaturing proteins. The recruited Hsp90ab1 activates diverse NPs' pathological behaviour by heat stress response (HSR), which were significantly reversed by geldanamycin (GA), the inhibitor of Hsp90ab1. Murine lung inflammation induced by PM2.5 and iron oxide NPs (Fe3O4NPs) is suppressed by GA, highlighting that Hsp90ab1-mediated UPR is a potential target for the treatment of environmental pollution-related illnesses. Based on our findings, the UPR and Hsp90ab1 presented in the corona of particles initiate fundamental intracellular reactions that lead to common pathological outcomes, which may provide new insights for understanding nanotoxicity and designing therapeutic approaches for diseases associated with environmental pollution.


Asunto(s)
Nanopartículas , Corona de Proteínas , Animales , Ratones , Corona de Proteínas/metabolismo , Proteínas , Respuesta de Proteína Desplegada
13.
Nanoscale ; 12(29): 15857-15868, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32696774

RESUMEN

The protein corona influences and determines the biological function of nanoparticles (NPs) in vivo. Analysis and understanding of the activities of proteins in coronas are crucial for nanobiology and nanomedicine research. Misfolded proteins in the corona of NPs theoretically exist, and a protein denaturation-related cellular response might occur in this process as well as in related diseases. The exact evaluation of protein denaturation in the corona is valuable to assess the bioactivities of NPs. Here, we found that the level of adsorbed heat shock protein 90 kDa α class B member 1 (Hsp90ab1) by the denatured protein in iron-cobalt-nickel alloy NPs (FeCoNi NPs) and iron oxide NPs (Fe3O4 NPs) was correlated with circular dichroism (CD) analysis and 1-anilinonaphthalene-8-sulfonate (ANS) analysis. The content of Hsp90ab1 in the corona could be easily analysed by western blotting (WB). Further analysis suggested that the method could precisely show the time-dependent protein denaturation on Fe3O4 NPs, as well as the influence of the size and the surface modification. More importantly, this method could be applied to other proteins, like lysozyme, other than albumin. Based on the results and the correlation analysis, incubation and detection of Hsp90ab1 in the NP-corona complex can be used as a new and feasible method to evaluate protein denaturation induced by NPs.


Asunto(s)
Nanopartículas , Corona de Proteínas , Adsorción , Proteínas HSP90 de Choque Térmico , Nanomedicina , Desnaturalización Proteica , Proteínas
14.
Eng Life Sci ; 19(2): 112-120, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32624993

RESUMEN

To improve fermentative production of enduracidin, heavy-ion beams generated by the Heavy Ion Research Facility in Lanzhou (HIRFL), China, were employed for the first time to generate mutations in Streptomyces fungicidicus. Initial screening detected 44 positive mutants with larger inhibition zone, which were subsequently tested based on flask fermentation. Finally, 20 mutants showed 20% increase in enduracidin production, when compared with the original strain. Among them, enduracidin production by the three mutants (M13, M30, and M34) was significantly higher than that by the original strain. In particular, mutant M30 exhibited highest enduracidin production, which was 114% higher than that obtained with the original strain. Following culture optimization, the maximal enduracidin yield obtained by M30 reached 918.5 mg/L in 10 days, which was 34% higher than that noted in the control.

15.
Eng Life Sci ; 18(9): 626-634, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32624942

RESUMEN

The aim of this study was to improve l-lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy-ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l-lactic acid producers, a scale-down from shake flask to microtiter plate was developed. The results showed that 24-well U-bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale-down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l-lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed-batch fermentation, the A69 mutant can accumulate 114.2 g/L l-lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain lactic acid-overproducing strain.

16.
Chem Asian J ; 9(12): 3472-81, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25213329

RESUMEN

The thiolate-catalyzed Tishchenko reaction has shown high chemoselectivity for the formation of double aromatic-substituted esters. In the present study, the detailed reaction mechanism and, in particular, the origin of the observed high chemoselectivity, have been studied with DFT calculations. The catalytic cycle mainly consisted of three steps: 1,2-addition, hydride transfer, and acyl transfer steps. The calculation results reproduce the experimental observations that 4-chlorobenzaldehyde acts as the hydrogen donor (carbonyl part in the ester product), while 2-methoxybenzaldehyde acts as the hydrogen acceptor (alcohol part in the product). The two main factors are responsible for such chemoselectivity: 1) in the rate-determining hydride transfer step, the para-chloride substituent facilitates the hydride-donating process by weakening the steric hindrance, and 2) the ortho-methoxy substituent facilitates the hydride-accepting process by stabilizing the magnesium center (by compensating for the electron deficiency).

17.
Curr Cancer Drug Targets ; 13(5): 558-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23713993

RESUMEN

Aberrant histone lysine methylation that is controlled by histone lysine methyltransferases (KMTs) and demethylases (KDMs) plays significant roles in carcinogenesis. Infections by tumor viruses or parasites and exposures to chemical carcinogens can modify the process of histone lysine methylation. Many KMTs and KDMs contribute to malignant transformation by regulating the expression of human telomerase reverse transcriptase (hTERT), forming a fused gene, interacting with proto-oncogenes or being up-regulated in cancer cells. In addition, histone lysine methylation participates in tumor suppressor gene inactivation during the early stages of carcinogenesis by regulating DNA methylation and/or by other DNA methylation independent mechanisms. Furthermore, recent genetic discoveries of many mutations in KMTs and KDMs in various types of cancers highlight their numerous roles in carcinogenesis and provide rare opportunities for selective and tumor-specific targeting of these enzymes. The study on global histone lysine methylation levels may also offer specific biomarkers for cancer detection, diagnosis and prognosis, as well as for genotoxic and non-genotoxic carcinogenic exposures and risk assessment. This review summarizes the role of histone lysine methylation in the process of cellular transformation and carcinogenesis, genetic alterations of KMTs and KDMs in different cancers and recent progress in discovery of small molecule inhibitors of these enzymes.


Asunto(s)
Antineoplásicos/uso terapéutico , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Histona Demetilasas/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/prevención & control , Animales , Humanos , Neoplasias/enzimología
18.
Nutr Cancer ; 65 Suppl 1: 68-77, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23682785

RESUMEN

Garcinia mangostana, often referred to as mangosteen, is a fruit grown in Southeast Asia and has been used for centuries as a local beverage and natural medicine. Its bioactive compounds, xanthones (i.e., gartanin, α-mangostin, etc), have reported effects on ailments ranging from skin infections and inflammation to urinary tract infections. We demonstrate that mangosteen xanthones (i.e., gartanin and α-mangostin) at pharmacologically achievable concentrations inhibit the growth of cancer cell lines from different stages of human urinary bladder cancer. The growth inhibitory effects of gartanin in mouse embryonic fibroblasts are at least in part dependent on the existence of p53 or TSC1. Indeed, further studies have shown that gartanin treatment of bladder cancer cell lines T24 and RT4 resulted in a marked suppression of p70S6 and 4E-BP1 expression and induction of autophagy, suggesting the inhibition of the mTOR pathway. In addition, gartanin downregulated the expression of Bcl-2 and activated the p53 pathway leading to apoptosis induction. Together, these results suggested that gartanin is a multiple targeting agent that is suitable for further study into its chemopreventive properties for human urinary bladder cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Bebidas/análisis , Garcinia mangostana/química , Serina-Treonina Quinasas TOR/metabolismo , Xantonas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Regulación hacia Abajo , Frutas/química , Humanos , Ratones , Microscopía Fluorescente , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/patología
19.
Int J Pharm ; 450(1-2): 296-303, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23598077

RESUMEN

pH-sensitive poly(L-glutamic acid) grafted mesoporous silica nanoparticles (MSN-PLGA) were prepared by the surface-initiated N-carboxyanhydride polymerization method. The resultant MSN-PLGA was well dispersed in aqueous medium and showed high drug loading efficiency, superior stability, and significantly higher drug release rates. The cumulative release of doxorubicin hydrochloride (DOX) from DOX-loaded MSN-PLGA (DOX@MSN-PLGA) was pH-dependent and the release rate was much higher at pH 5.5 than that at pH 7.4. The cytotoxicity results indicated that the blank MSN-PLGA was biocompatible and the DOX@MSN-PLGA had potent in vitro cytotoxicity effect similar to free DOX. Overall, these results demonstrate that MSN-PLGA is a promising platform to build pH controlled drug delivery systems for cancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanopartículas/química , Ácido Poliglutámico/química , Dióxido de Silicio/química , Antibióticos Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas/administración & dosificación , Concentración Osmolar , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
20.
Phys Chem Chem Phys ; 15(38): 15727-33, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23575880

RESUMEN

Gold nanorods (AuNRs) were conjugated with chlorin e6 (Ce6), a commonly used photosensitizer, to form AuNRs-Ce6 by electrostatic binding. Due to the strong surface plasmon resonance coupling, the fluorescence of conjugated Ce6 was enhanced 3-fold and the production of singlet oxygen was increased 1.4-fold. AuNRs-Ce6 were taken up by the HeLa and KB cell lines more easily than free Ce6, enhancing the intracellular delivery of Ce6. The increased cellular amount of Ce6 leads to a 3-fold more efficient photodynamic killing of these two cell lines. This demonstrates the potential of this approach to improve photodynamic detection and therapy of cancers.


Asunto(s)
Oro/química , Nanotubos/química , Fármacos Fotosensibilizantes/síntesis química , Porfirinas/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Clorofilidas , Células HeLa , Humanos , Microscopía Confocal , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/toxicidad , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA