Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 346: 107318, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657879

RESUMEN

Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Ácidos Nucleicos , Proteínas Intrínsecamente Desordenadas/química , Condensados Biomoleculares , Ácidos Nucleicos/química , Conformación Molecular , Espectroscopía de Resonancia Magnética
2.
Structure ; 30(5): 721-732.e4, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290794

RESUMEN

Poxviruses encode decapping enzymes that remove the protective 5' cap from both host and viral mRNAs to commit transcripts for decay by the cellular exonuclease Xrn1. Decapping by these enzymes is critical for poxvirus pathogenicity by means of simultaneously suppressing host protein synthesis and limiting the accumulation of viral double-stranded RNA (dsRNA), a trigger for antiviral responses. Here we present a high-resolution structural view of the vaccinia virus decapping enzyme D9. This Nudix enzyme contains a domain organization different from other decapping enzymes in which a three-helix bundle is inserted into the catalytic Nudix domain. The 5' mRNA cap is positioned in a bipartite active site at the interface of the two domains. Specificity for the methylated guanosine cap is achieved by stacking between conserved aromatic residues in a manner similar to that observed in canonical cap-binding proteins VP39, eIF4E, and CBP20, and distinct from eukaryotic decapping enzyme Dcp2.


Asunto(s)
Poxviridae , Proteínas Virales , Catálisis , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Poxviridae/genética , Poxviridae/metabolismo , Caperuzas de ARN/metabolismo , ARN Bicatenario , ARN Mensajero/metabolismo , Virus Vaccinia/genética , Proteínas Virales/metabolismo
3.
Nat Chem Biol ; 17(5): 615-623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767388

RESUMEN

Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.


Asunto(s)
Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sitios de Unión , Clonación Molecular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coloración y Etiquetado/métodos , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 116(47): 23512-23517, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31690658

RESUMEN

Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/fisiología , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Caperuzas de ARN/metabolismo , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Biol Open ; 7(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037883

RESUMEN

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

6.
Nucleic Acids Res ; 46(12): 6318-6329, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29618050

RESUMEN

5' mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are well-studied, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5' mRNA decay pathways.


Asunto(s)
Endorribonucleasas/química , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Secuencias de Aminoácidos , Dominio Catalítico , Endorribonucleasas/metabolismo , Modelos Moleculares , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Nat Commun ; 9(1): 1152, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559651

RESUMEN

The conserved decapping enzyme Dcp2 recognizes and removes the 5' eukaryotic cap from mRNA transcripts in a critical step of many cellular RNA decay pathways. Dcp2 is a dynamic enzyme that functions in concert with the essential activator Dcp1 and a diverse set of coactivators to selectively and efficiently decap target mRNAs in the cell. Here we present a 2.84 Å crystal structure of K. lactis Dcp1-Dcp2 in complex with coactivators Edc1 and Edc3, and with substrate analog bound to the Dcp2 active site. Our structure shows how Dcp2 recognizes cap substrate in the catalytically active conformation of the enzyme, and how coactivator Edc1 forms a three-way interface that bridges the domains of Dcp2 to consolidate the active conformation. Kinetic data reveal Dcp2 has selectivity for the first transcribed nucleotide during the catalytic step. The heterotetrameric Edc1-Dcp1-Dcp2-Edc3 structure shows how coactivators Edc1 and Edc3 can act simultaneously to activate decapping catalysis.


Asunto(s)
Kluyveromyces/genética , Caperuzas de ARN/genética , ARN de Hongos/química , ARN Mensajero/química , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Kluyveromyces/química , Kluyveromyces/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA