Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(23): 237203, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936781

RESUMEN

Previously, it has been shown that rapid cooling of yttrium-iron-garnet-platinum nanostructures, preheated by an electric current sent through the Pt layer, leads to overpopulation of a magnon gas and to subsequent formation of a Bose-Einstein condensate (BEC) of magnons. The spin Hall effect (SHE), which creates a spin-polarized current in the Pt layer, can inject or annihilate magnons depending on the electric current and applied field orientations. Here we demonstrate that the injection or annihilation of magnons via the SHE can prevent or promote the formation of a rapid cooling-induced magnon BEC. Depending on the current polarity, a change in the BEC threshold of -8% and +6% was detected. These findings demonstrate a new method to control macroscopic quantum states, paving the way for their application in spintronic devices.

2.
Nat Nanotechnol ; 15(6): 457-461, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32313217

RESUMEN

The fundamental phenomenon of Bose-Einstein condensation has been observed in different systems of real particles and quasiparticles. The condensation of real particles is achieved through a major reduction in temperature, while for quasiparticles, a mechanism of external injection of bosons by irradiation is required. Here, we present a new and universal approach to enable Bose-Einstein condensation of quasiparticles and to corroborate it experimentally by using magnons as the Bose-particle model system. The critical point to this approach is the introduction of a disequilibrium of magnons with the phonon bath. After heating to an elevated temperature, a sudden decrease in the temperature of the phonons, which is approximately instant on the time scales of the magnon system, results in a large excess of incoherent magnons. The consequent spectral redistribution of these magnons triggers the Bose-Einstein condensation.

3.
Sci Rep ; 7: 43705, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262731

RESUMEN

The development of compact and tunable room temperature sources of coherent THz-frequency signals would open a way for numerous new applications. The existing approaches to THz-frequency generation based on superconductor Josephson junctions (JJ), free electron lasers, and quantum cascades require cryogenic temperatures or/and complex setups, preventing the miniaturization and wide use of these devices. We demonstrate theoretically that a bi-layer of a heavy metal (Pt) and a bi-axial antiferromagnetic (AFM) dielectric (NiO) can be a source of a coherent THz signal. A spin-current flowing from a DC-current-driven Pt layer and polarized along the hard AFM anisotropy axis excites a non-uniform in time precession of magnetizations sublattices in the AFM, due to the presence of a weak easy-plane AFM anisotropy. The frequency of the AFM oscillations varies in the range of 0.1-2.0 THz with the driving current in the Pt layer from 108 A/cm2 to 109 A/cm2. The THz-frequency signal from the AFM with the amplitude exceeding 1 V/cm is picked up by the inverse spin-Hall effect in Pt. The operation of a room-temperature AFM THz-frequency oscillator is similar to that of a cryogenic JJ oscillator, with the energy of the easy-plane magnetic anisotropy playing the role of the Josephson energy.

4.
Nat Mater ; 11(12): 1028-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23064497

RESUMEN

With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.

5.
Phys Rev Lett ; 101(24): 247203, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19113660

RESUMEN

A spin-wave theory explaining experimentally observed frequency splitting of dynamical spin excitations with azimuthal symmetry of a magnetic dot in a vortex ground state is developed. It is shown that this splitting is a result of the dipolar hybridization of three spin-wave modes of a dot having azimuthal indices |m|=1: two high-frequency azimuthal dipolar modes of the in-plane part of the vortex with indices m = +/-1 and a low-frequency (Goldstone-like) gyrotropic mode, describing translational motion of the vortex core and having index m = +1. The analytically calculated magnitude of the frequency splitting is proportional to the ratio of the dot thickness to its radius and quantitatively agrees with the results of time-resolved Kerr experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA