Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 6(10): 2432-2445, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36303716

RESUMEN

India experiences some of the highest levels of ambient PM2.5 aerosol pollution in the world. However, due to the historical dearth of in situ measurements, chemical transport models that are often used to estimate PM2.5 exposure over the region are rarely evaluated. Here, we conduct a novel model comparison with speciated airborne measurements of fine aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we incorporate process-level changes to the model and use satellite observations from the Cross-track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI) to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates significantly lower bias (NMBModified: 0.19; NMBBase: 0.61) when validated against the airborne aerosol measurements, particularly for the nitrate (NMBModified: 0.08; NMBBase: 1.64) and ammonium simulation (NMBModified: 0.49; NMBBase: 0.90). We use this validated simulation to estimate a population-weighted annual PM2.5 exposure of 61.4 µg m-3, with the RCO (residential, commercial, and other) and energy sectors contributing 21% and 19%, respectively, resulting in an estimated 961,000 annual PM2.5-attributable deaths. Regional exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation). Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM2.5 aerosol source attribution for health assessments and air quality management in India.

2.
Environ Sci Technol ; 56(13): 9773-9783, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35706337

RESUMEN

India is home to 1.3 billion people who are exposed to some of the highest levels of ambient air pollution in the world. In addition, India is one of the fastest-growing carbon-emitting countries. Here, we assess how two strategies to reuse waste-heat from coal-fired power plants and other large sources would impact PM2.5-air quality, human health, and CO2 emissions in 2015 and a future year, 2050, using varying levels of policy adoption (current regulations, proposed single-sector policies, and ambitious single-sector strategies). We find that power plant and industrial waste-heat reuse as input to district heating systems (DHSs), a novel, multisector strategy to reduce local biomass burning for heating emissions, can offset 71.3-85.2% of residential heating demand in communities near a power plant (9.3-12.4% of the nationwide heating demand) with the highest benefits observed during winter months in areas with collocated industrial activity and higher residential heating demands (e.g., New Delhi). Utilizing waste-heat to generate electricity via organic Rankine cycles (ORCs) can generate an additional 22 (11% of total coal-fired generating capacity), 41 (8%), 32 (13%), and 6 (5%) GW of electricity capacity in the 2015, 2050-current regulations, 2050-single-sector, and 2050-ambitious-single-sector scenarios, respectively. Emission estimates utilizing these strategies were input to the GEOS-Chem model, and population-weighted, simulated PM2.5 showed small improvements in the DHS (0.2-0.4%) and ORC (0.3-3.4%) scenarios, where the minimal DHS PM2.5-benefit is attributed to the small contribution of biomass burning for heating to nationwide PM2.5 emissions (much of the biomass burning activity is for cooking). The PM2.5 reductions lead to ∼130-36,000 mortalities per year avoided among the scenarios, with the largest health benefits observed in the ORC scenarios. Nationwide CO2 emissions reduced <0.04% by DHSs but showed larger reductions using ORCs (1.9-7.4%). Coal fly-ash as material exchange in cement and brick production was assessed, and capacity exists to completely reutilize unused fly-ash toward cement and brick production in each of the scenarios.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Dióxido de Carbono , China , Carbón Mineral , Ceniza del Carbón , Calor , Humanos , Material Particulado/análisis
3.
J Environ Manage ; 302(Pt B): 114079, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800767

RESUMEN

Reduced anthropogenic activities during the COVID-19 pandemic caused significant reductions in ambient fine particulate matter (PM2.5), SO2 and NOx concentrations across India. However, tropospheric O3 concentrations spiked over many urban regions. Moreover, reductions in SO2 and NOx (atmospheric cooling agents) emissions unmask heating exerted by warming forcers. Basing governmental guidelines, we model daily emissions reductions in CO2 and short-lived climate forcers (SLCFs) during different lockdown periods using bottom-up regional emission inventory. The transport sector, with maximum level of closure, followed by power plants and industry reduced nearly -50% to -75% emissions of CO2, primary PM2.5, SO2 and NOx, while warming SLCFs (black carbon, CH4, CO and non-methane VOCs) showed insignificant reduction from continuing activity in residential and agricultural sectors. Consequently, the analysis indicates that reduction in the emission ratio of NOx to NMVOC coincided spatially with observed increases in O3, consistent with reduced uptake of O3 from night-time NOx reactions. Also, similar reductions, occurring for longer timescales (say, a year), can potentially increase the annual warming rate over India from the positive regional temperature response, estimated using climate metric. Further, by linking ongoing policies to sectoral reductions during lockdown, this study shows that the relative pacing of implementation among policies is crucial to avoid counter-productive results. A key policy recommendation is introduction and improving efficacy of programs targeting reduction of NMVOC and warming SLCF emissions (shifts away from biomass cooking technologies, household electrification and curbing open burning of crop residues), must precede the strengthening of policies targeting NOx and SO2 dominated sectors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Efectos Antropogénicos , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , Políticas , SARS-CoV-2
4.
Atmos Chem Phys ; 18(11): 8017-8039, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33679902

RESUMEN

India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from "other" sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...