Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(26): 29684-29691, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32496037

RESUMEN

Previous efforts to directly write conductive metals have been narrowly focused on nanoparticle ink suspensions that require aggressive sintering (>200 °C) and result in low-density, small-grained agglomerates with electrical conductivities <25% of bulk metal. Here, we demonstrate aerosol jet printing of a reactive ink solution and characterize high-density (93%) printed silver traces having near-bulk conductivity and grain sizes greater than the electron mean free path, while only requiring a low-temperature (80 °C) treatment. We have developed a predictive electronic transport model which correlates the microstructure to the measured conductivity and identifies a strategy to approach the practical conductivity limit for printed metals. Our analysis of how grain boundaries and tortuosity contribute to electrical resistivity provides insight into the basic materials science that governs how an ink formulator or process developer might approach improving the conductivity. Transmission line measurements validate that electrical properties are preserved up to 20 GHz, which demonstrates the utility of this technique for printed RF components. This work reveals a new method of producing robust printed electronics that retain the advantages of rapid prototyping and three-dimensional fabrication while achieving the performance necessary for success within the aerospace and communications industries.

2.
Nat Commun ; 9(1): 2524, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955064

RESUMEN

Recently, non-volatile resistance switching or memristor (equivalently, atomristor in atomic layers) effect was discovered in transitional metal dichalcogenides (TMD) vertical devices. Owing to the monolayer-thin transport and high crystalline quality, ON-state resistances below 10 Ω are achievable, making MoS2 atomristors suitable as energy-efficient radio-frequency (RF) switches. MoS2 RF switches afford zero-hold voltage, hence, zero-static power dissipation, overcoming the limitation of transistor and mechanical switches. Furthermore, MoS2 switches are fully electronic and can be integrated on arbitrary substrates unlike phase-change RF switches. High-frequency results reveal that a key figure of merit, the cutoff frequency (fc), is about 10 THz for sub-µm2 switches with favorable scaling that can afford fc above 100 THz for nanoscale devices, exceeding the performance of contemporary switches that suffer from an area-invariant scaling. These results indicate a new electronic application of TMDs as non-volatile switches for communication platforms, including mobile systems, low-power internet-of-things, and THz beam steering.

3.
Nanotechnology ; 29(15): 154003, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29384132

RESUMEN

Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

4.
ACS Appl Mater Interfaces ; 9(48): 42067-42074, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29119783

RESUMEN

Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm2 K W-1, over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

5.
Adv Mater ; 29(47)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29067743

RESUMEN

The morphology and dimension of the conductive filament formed in a memristive device are strongly influenced by the thickness of its switching medium layer. Aggressive scaling of this active layer thickness is critical toward reducing the operating current, voltage, and energy consumption in filamentary-type memristors. Previously, the thickness of this filament layer has been limited to above a few nanometers due to processing constraints, making it challenging to further suppress the on-state current and the switching voltage. Here, the formation of conductive filaments in a material medium with sub-nanometer thickness formed through the oxidation of atomically thin two-dimensional boron nitride is studied. The resulting memristive device exhibits sub-nanometer filamentary switching with sub-pA operation current and femtojoule per bit energy consumption. Furthermore, by confining the filament to the atomic scale, current switching characteristics are observed that are distinct from that in thicker medium due to the profoundly different atomic kinetics. The filament morphology in such an aggressively scaled memristive device is also theoretically explored. These ultralow energy devices are promising for realizing femtojoule and sub-femtojoule electronic computation, which can be attractive for applications in a wide range of electronics systems that desire ultralow power operation.

6.
ACS Nano ; 11(7): 7156-7163, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28656774

RESUMEN

Excitatory and inhibitory postsynaptic potentials are the two fundamental categories of synaptic responses underlying the diverse functionalities of the mammalian nervous system. Recent advances in neuroscience have revealed the co-release of both glutamate and GABA neurotransmitters from a single axon terminal in neurons at the ventral tegmental area that can result in the reconfiguration of the postsynaptic potentials between excitatory and inhibitory effects. The ability to mimic such features of the biological synapses in semiconductor devices, which is lacking in the conventional field effect transistor-type and memristor-type artificial synaptic devices, can enhance the functionalities and versatility of neuromorphic electronic systems in performing tasks such as image recognition, learning, and cognition. Here, we demonstrate an artificial synaptic device concept, an ambipolar junction synaptic devices, which utilizes the tunable electronic properties of the heterojunction between two layered semiconductor materials black phosphorus and tin selenide to mimic the different states of the synaptic connection and, hence, realize the dynamic reconfigurability between excitatory and inhibitory postsynaptic effects. The resulting device relies only on the electrical biases at either the presynaptic or the postsynaptic terminal to facilitate such dynamic reconfigurability. It is distinctively different from the conventional heterosynaptic device in terms of both its operational characteristics and biological equivalence. Key properties of the synapses such as potentiation and depression and spike-timing-dependent plasticity are mimicked in the device for both the excitatory and inhibitory response modes. The device offers reconfiguration properties with the potential to enable useful functionalities in hardware-based artificial neural network.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles/instrumentación , Fósforo/química , Compuestos de Selenio/química , Semiconductores , Sinapsis/química , Estaño/química , Potenciales de Acción , Electrones , Diseño de Equipo
7.
Nano Lett ; 17(6): 3675-3680, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28505461

RESUMEN

As an emerging single elemental layered material with a low symmetry in-plane crystal lattice, black phosphorus (BP) has attracted significant research interest owing to its unique electronic and optoelectronic properties, including its widely tunable bandgap, polarization-dependent photoresponse and highly anisotropic in-plane charge transport. Despite extensive study of the steady-state charge transport in BP, there has not been direct characterization and visualization of the hot carriers dynamics in BP immediately after photoexcitation, which is crucial to understanding the performance of BP-based optoelectronic devices. Here we use the newly developed scanning ultrafast electron microscopy (SUEM) to directly visualize the motion of photoexcited hot carriers on the surface of BP in both space and time. We observe highly anisotropic in-plane diffusion of hot holes with a 15 times higher diffusivity along the armchair (x-) direction than that along the zigzag (y-) direction. Our results provide direct evidence of anisotropic hot carrier transport in BP and demonstrate the capability of SUEM to resolve ultrafast hot carrier dynamics in layered two-dimensional materials.

8.
Dalton Trans ; 39(19): 4551-8, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20379588

RESUMEN

The (SiH3)3P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH3)2P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH3Br and (Me3Sn)3P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me2M-P(SiH3)2 (M = Al, Ga, In) derivatives of Me3M containing the (SiH3)2P ligand for the first time, in analogy to the known Me2M-P(SiMe3)2 counterparts. A dimeric structure of Me2M-P(SiH3)2 is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH3)3P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹9 atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²° atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si3P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.

9.
Dalton Trans ; (34): 6773-82, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19690688

RESUMEN

Hydrolysis reactions of silyl-germyl triflates are used to produce ether-like Si-Ge hydride compounds including H(3)SiOSiH(3) and the previously unknown O(SiH(2)GeH(3))(2). The structural, energetic and vibrational properties of the latter were investigated by experimental and quantum chemical simulation methods. A combined Raman, infrared and theoretical analysis indicated that the compound consists of an equal mixture of linear and gauche isomers in analogy to the butane-like H(3)GeSiH(2)SiH(2)GeH(3) with an exceedingly small torsional barrier of approximately 0.2 kcal mol(-1). This is also corroborated by thermochemistry simulations which indicate that the energy difference between the isomers is less than 1 kcal mol(-1). Proof-of-principle depositions of O(SiH(2)GeH(3))(2) at 500 degrees C on Si(100) yielded nearly stoichiometric Si(2)Ge(2)O materials, closely reflecting the composition of the molecular core. A complete characterization of the film by RBS, XTEM, Raman and IR ellipsometry revealed the presence of Si(0.30)Ge(0.70) quantum dots embedded within an amorphous matrix of Si-Ge-O suboxide, as required for the fabrication of high performance nonvolatile memory devices. The use of readily available starting materials coupled with facile purification and high yields also makes the above molecular approach an attractive synthesis route to H(3)SiOSiH(3) with industrial applications in the formation of Si-O-N high-k gate materials in high-mobility SiGe based transistors.

10.
Inorg Chem ; 48(13): 6314-20, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19496607

RESUMEN

The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

11.
J Am Chem Soc ; 129(25): 7950-60, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17547404

RESUMEN

We describe the synthesis of a new family of chlorinated Si-Ge hydrides based on the formula ClnH6-nSiGe. Selectively controlled chlorination of H3SiGeH3 is provided by reactions with BCl3 to produce ClH2SiGeH3 (1) and Cl2HSiGeH3 (2). This represents a viable single-step route to the target compounds in commercial yields for semiconductor applications. The built-in Cl functionalities are specifically designed to facilitate selective growth compatible with CMOS processing. Higher order polychlorinated derivatives such as Cl2SiHGeH2Cl (3), Cl2SiHGeHCl2 (4), ClSiH2GeH2Cl (5), and ClSiH2GeHCl2 (6) have also been produced for the first time leading to a new class of highly reactive Si-Ge compounds that are of fundamental and practical interest. Compounds 1-6 are characterized by physical and spectroscopic methods including NMR, FTIR, and mass spectroscopy. The results combined with first principles density functional theory are used to elucidate the structural, thermochemical, and vibrational trends throughout the general sequence of ClnH6-nSiGe and provide insight into the dependence of the reaction kinetics on Cl content in the products. The formation of 1 was also demonstrated by an alternative route based on the reaction of (SO3CF3)SiH2GeH3 and CsCl. Depositions of 1 and 2 at very low temperatures (380-450 degrees C) produce near stoichiometric SiGe films on Si exhibiting monocrystalline microstructures, smooth and continuous surface morphologies, reduced defect densities, and unusual strain properties.

12.
J Am Chem Soc ; 128(21): 6919-30, 2006 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-16719472

RESUMEN

The synthesis of butane-like (GeH(3))(2)(SiH(2))(2) (1), (GeH(3))(2)SiH(SiH(3)) (2), and (GeH(3))(2)(SiH(2)GeH(2)) (3) Si-Ge hydrides with applications in low-temperature synthesis of Ge-rich Si(1-x)Ge(x) optoelectronic alloys has been demonstrated. The compositional, vibrational, structural, and thermochemical properties of these compounds were studied by FTIR, multinuclear NMR, mass spectrometry, Rutherford backscattering, and density functional theory (DFT) simulations. The analyses indicate that the linear (GeH(3))(2)(SiH(2))(2) (1) and (GeH(3))(2)(SiH(2)GeH(2)) (3) compounds exist as a mixture of the classic normal (n) and gauche (g) conformational isomers which do not seem to interconvert at 22 degrees C. The conformational proportions in the samples were determined using a new fitting procedure, which combines calculated molecular spectra to reproduce those observed by varying the global intensity, frequency scale, and admixture coefficients of the individual conformers. The (GeH(3))(2)(SiH(2))(2) (1) species was then utilized to fabricate Si(0.50)Ge(0.50) semiconductor alloys reflecting exactly the Si/Ge content of the precursor. Device quality layers were grown via gas source MBE directly on Si(100) at unprecedented low temperatures 350-450 degrees C and display homogeneous compositional and strain profiles, low threading dislocation densities, and atomically planar surfaces. Low energy electron microscopy (LEEM) analysis has demonstrated that the precursor is highly reactive on Si(100) surfaces, with H(2) desorption kinetics comparable to those of Ge(2)H(6), despite the presence of strong Si-H bonds in the molecular structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...