Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Lancet Planet Health ; 8(3): e172-e187, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38453383

RESUMEN

Comprehensive but interpretable assessment of the environmental performance of diets involves choosing a set of appropriate indicators. Current knowledge and data gaps on the origin of dietary foodstuffs restrict use of indicators relying on site-specific information. This Personal View summarises commonly used indicators for assessing the environmental performance of diets, briefly outlines their benefits and drawbacks, and provides recommendations on indicator choices for actors across multiple fields involved in activities that include the environmental assessment of diets. We then provide recommendations on indicator choices for actors across multiple fields involved in activities that use environmental assessments, such as health and nutrition experts, policy makers, decision makers, and private-sector and public-sector sustainability officers. We recommend that environmental assessment of diets should include indicators for at least the five following areas: climate change, biosphere integrity, blue water consumption, novel entities, and impacts on natural resources (especially wild fish stocks), to capture important environmental trade-offs. If more indicators can be handled in the assessment, indicators to capture impacts related to land use quantity and quality and green water consumption should be used. For ambitious assessments, indicators related to biogeochemical flows, stratospheric ozone depletion, and energy use can be added.


Asunto(s)
Dieta
2.
Ambio ; 51(9): 2025-2042, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35430721

RESUMEN

To balance trade-offs between livestock's negative environmental impacts and their positive contributions (e.g. maintaining semi-natural grasslands, varied agricultural landscapes and crop rotations), a better understanding is needed of how the supply of ecosystem services differs across farms. We analysed a suite of indicators for non-provisioning ecosystem services on a large subset of Swedish farms (71% of farms, covering 82% of agricultural land) and related these to farm type, farm size and livestock density. The analysed indicators exhibited clear geographical patterns with hotspots especially in less productive regions. Controlling for this spatial variation we still found that small-scale and ruminant farms were associated with more varied landscapes, small-scale habitats, semi-natural grasslands and better crop sequences compared to nearby farms specialised in crop production, while farms specialising in monogastric livestock were associated with less varied landscapes and inferior crop sequences. Results for cultural ecosystem services indicated that farms with more semi-natural grassland were associated with more visitors and more likely located within designated recreation or nature conservation areas.


Asunto(s)
Agricultura , Ecosistema , Agricultura/métodos , Animales , Conservación de los Recursos Naturales , Granjas , Ganado , Rumiantes
3.
Sci Total Environ ; 725: 138332, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32304962

RESUMEN

Nitrogen fertilisation is an essential part of modern agriculture, providing food for a growing human population, but also causing environmental impacts when reactive nitrogen (N) is released to the environment. The amount and impact of these emissions are difficult to quantify in life cycle assessment (LCA), due to their site-dependent nature. This study compared seven models for direct soil nitrous oxide (N2O) emissions, seven models for N leaching and five characterisation models for marine eutrophication impact assessment, selected to represent medium-effort options for accounting for spatial variation in emissions and impact assessment. In a case study, the models were applied to wheat cultivation at two Swedish sites to estimate climate and marine eutrophication impact. Direct N2O emissions estimated by the models varied by up to five-fold at one of the sites and contributed 21-56% of the total climate impact. Site-dependent models gave both lower and higher N2O emissions estimates than the site-generic Tier 1 model from the Intergovernmental Panel on Climate Change (IPCC). Estimated N leaching also varied by up to fivefold at one of the sites and contributed 47-93% of the total eutrophication potential, depending on model choice. All site-dependent models estimated lower N leaching than the site-generic IPCC Tier 1 model. Marine eutrophication impact estimates varied by almost an order of magnitude depending on characterisation model choice. The large variation between models found in this study highlights the importance of model choice for N emissions and marine eutrophication impact assessment in LCA of crop cultivation. Due to the divergence of model outcomes and different limitations of some of the models, no general recommendations on choosing soil N2O emissions model, N leaching model or characterisation model for marine eutrophication could be given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...