Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 206: 115291, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306820

RESUMEN

Selatogrel is a potent inhibitor of adenosine diphosphate (ADP) binding to the P2Y12 receptor, preventing platelet activation. We have previously shown that the P2Y12 receptor constitutively activates Gi- and Go-protein-mediated signaling in human platelets. Here, we report that selatogrel acts as an inverse agonist of the P2Y12 receptor. Specifically, using bioluminescence resonance energy transfer2 (BRET2) probes, selatogrel, ticagrelor, and elinogrel were shown to stabilize the inactive form of the Gαi/o-Gßγ complex in cells with recombinant expression of the P2Y12 receptor. In dose-response experiments, while selatogrel exhibited a maximal efficacy similar to ticagrelor, selatogrel was approximately 100-fold more potent than ticagrelor. Quantification of relative cyclic adenosine monophosphate (cAMP) levels in cells expressing the cAMP BRET1 sensor (CAMYEL probe) confirmed that selatogrel completely abolished the constitutive activity of the P2Y12 receptor. In agreement, selatogrel increased basal cAMP levels in human platelets, confirming inverse agonism on the endogenous human platelet P2Y12 receptor. In agreement with the biochemical phenotype of inverse agonism efficacy of selatogrel, the 2.8 Angstrom resolution cocrystal structure of selatogrel bound to the P2Y12 receptor confirmed that selatogrel stabilizes the inactive, basal state of the receptor. Selatogrel bound to pocket 1, spanning helix III to VII. Furthermore, the binding mode of selatogrel, suggesting steric overlap with the proposed binding site of ADP and the ADP analog 2-methylthioadenosine diphosphate (2MeSADP), agrees with the functional characterization of selatogrel preventing platelet activation by blocking ADP binding to the P2Y12 receptor.


Asunto(s)
Activación Plaquetaria , Antagonistas del Receptor Purinérgico P2Y , Humanos , Ticagrelor/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Plaquetas , Adenosina Difosfato/metabolismo , Agregación Plaquetaria
2.
J Med Chem ; 63(1): 66-87, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31804826

RESUMEN

UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Ácidos Hidroxámicos/uso terapéutico , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Escherichia coli/efectos de los fármacos , Femenino , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacocinética , Klebsiella pneumoniae/efectos de los fármacos , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pirroles/síntesis química , Pirroles/farmacocinética , Pirroles/uso terapéutico
3.
PLoS One ; 8(5): e64240, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704982

RESUMEN

Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn) by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds. Since mammalian Tgt is known to be indirectly essential to the conversion of phenylalanine to tyrosine, it is necessary to create substances which only inhibit bacterial but not eucaryotic Tgt. Therefore, it seems of utmost importance to study selectivity-determining features within both types of proteins. Homology models of Caenorhabditis elegans Tgt and human Tgt suggest that the replacement of Cys158 and Val233 in bacterial Tgt (Zymomonas mobilis Tgt numbering) by valine and accordingly glycine in eucaryotic Tgt largely accounts for the different substrate specificities. In the present study we have created mutated variants of Z. mobilis Tgt in order to investigate the impact of a Cys158Val and a Val233Gly exchange on catalytic activity and substrate specificity. Using enzyme kinetics and X-ray crystallography, we gained evidence that the Cys158Val mutation reduces the affinity to preQ1 while leaving the affinity to guanine unaffected. The Val233Gly exchange leads to an enlarged substrate binding pocket, that is necessary to accommodate queuine in a conformation compatible with the intermediately covalently bound tRNA molecule. Contrary to our expectations, we found that a priori queuine is recognised by the binding pocket of bacterial Tgt without, however, being used as a substrate.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Células Eucariotas/enzimología , Guanina/análogos & derivados , Pentosiltransferasa/antagonistas & inhibidores , Pentosiltransferasa/metabolismo , Zymomonas/enzimología , Animales , Sitios de Unión , Biocatálisis/efectos de los fármacos , Caenorhabditis elegans/enzimología , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Guanina/biosíntesis , Guanina/química , Guanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pentosiltransferasa/química , Mutación Puntual/genética , ARN de Transferencia/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato/efectos de los fármacos
4.
ACS Chem Biol ; 8(5): 1044-52, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23534475

RESUMEN

Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible with hinge-region binding, and docked into a panel of protein kinases. Fragments with a high consensus score were subsequently short-listed for synthesis. Application of this strategy led to a number of core fragments with no previously reported activity against kinases. Small libraries around the core fragments were synthesized, and representative compounds were tested against a large panel of protein kinases and subjected to co-crystallization experiments. Each of the tested compounds was active against at least one kinase, but not all kinases in the panel were inhibited. A number of compounds showed high ligand efficiencies for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1, SGK1, TAK1, and GCK for which only few inhibitors are reported in the literature.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Proteína Tirosina Quinasa CSK , Simulación por Computador , Cristalografía por Rayos X , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/química
5.
PLoS One ; 7(4): e35792, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563402

RESUMEN

CDP-ME kinase (IspE) contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP) pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hemiterpenos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Compuestos Organofosforados/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...