Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202400564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708558

RESUMEN

Chlorogenic acid (Chl), isochlorogenic acid A (Isochl A), and isochlorogenic acid B (Isochl B) are naturally occurring phenolic compounds, which have been shown to exert a regulatory effect on lipid metabolism. However, the mechanism underlying this effect remains unclear. Herein, we investigated the inhibitory effects and underlying mechanisms of these three phenolic compounds on oleic acid (OA)-induced HepG2 cells and high-fat diet (HFD)-fed zebrafish. Lipid accumulation and triacylglycerol levels increased in OA-induced cells, which was attenuated by Chl, Isochl A, and Isochl B. Moreover, the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) decreased, while superoxide dismutase (SOD) levels increased by Chl, Isochl A and Isochl B treatment. Western blot analysis demonstrated that Chl, Isochl A and Isochl B reduced the expression of lipogenesis-related protein, including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, peroxisome proliferator-activated receptor alpha gamma (PPARα) was increased by Chl, Isochl A, and Isochl B treatment. In addition, our results indicated that Chl, Isochl A and Isochl B decreased lipid profiles and lipid accumulation in HFD-fed zebrafish.

2.
Chem Biodivers ; : e202400145, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738490

RESUMEN

As a medicinal and edible food, Hippophae rhamnoides Linn. subsp. sinensis Rousi is plenty of bioactive secondary metabolites including flavonoids and their derivatives, which have a certain protective effect on oxidative damage. The present study isolated three new kaempferol derivatives (compound 1-3), named Hippophandine A-C, from H. rhamnoides seed residue. The structures of Hippophandine A-C were explicated by HR-ESI-MS, NMR, and chemical analyses. Hippophandine A-C (1, 5, and 10 µM) were used to attenuate H2O2-induced cell death in SH-SY5Y and explore the mechanism in oxidative damage. The results elucidated that Hippophandine A-C reduced MDA, and increased the relative SOD, GSH, CAT contents, Nrf2 and HO-1 expression in H2O2-induced SH-SY5Y.

3.
Eur J Pharmacol ; 960: 176154, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37884183

RESUMEN

Oligostilbenes are a group of natural products derived from the polymerization of stilbene monomers. Despite the demonstration of their activities in regulating lipid metabolism, the function of oligostilbenes in the adipogenic transdifferentiation of multipotent myoblast cells remains unknown. Hence, the five oligostilbenes from Iris lactea were tested for their regulatory effects on adipogenic transdifferentiation of C2C12 myoblast cells. As a result, it was shown that Vitisin A-13-O-ß-D-glucoside (VitAOG), Vitisin A (VitA) and Hopeaphenol (Hop) can greatly inhibit the adipogenic transdifferentiation of C2C12 cells by reducing lipid accumulation and downregulating the expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer binding protein beta (C/EBPß) and fatty acid binding proteins 4 (FABP4). In contrast, Vitisin D (VitD) and Isohopeaphenol (Isohop) promote adipogenic transdifferentiation of C2C12 cells by increasing lipid accumulation and upregulating the expression of adipogenesis and lipogenesis markers. Further research found that the lipolytic protein levels of adipocyte triglyceride lipase (ATGL) and phosphorylation of hormone-sensitive lipase (HSL) were elevated by VitAOG and VitA. Additionally, VitAOG and VitA maintain lipid homeostasis by improving mitochondrial function. Taken together, our study reveals an effect of oligostilbenes on lipid metabolism in C2C12 cells, and VitAOG and VitA can be regarded as potential candidates for the treatment of obesity and other disorders of lipid metabolism.


Asunto(s)
Adipogénesis , Género Iris , Ratones , Animales , Lipólisis , Lipogénesis , Género Iris/metabolismo , Esterol Esterasa/metabolismo , Glucósidos/farmacología , Transdiferenciación Celular , Lípidos , Células 3T3-L1 , PPAR gamma/metabolismo
4.
RSC Adv ; 12(51): 32912-32922, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425180

RESUMEN

Iris lactea Pall. var. chinensis (Fisch.) Koidz (Iris lactea) is an herbaceous perennial widely distributed in China, India, and South Korea. Iris lactea has been extensively used in traditional Chinese medicine. The present study isolated a new oligostilbene (compound 1), together with three known oligostilbenes (compounds 2, 3 and 4) from the seeds of Iris lactea. The structures of these compounds were elucidated by HRESIMS, NMR, and chemical analyses. The network-based pharmacologic analysis platform was used to predict the target proteins related to inflammation of isolated compounds. Furthermore, the isolated compounds were tested for their anti-inflammatory effects in LPS-stimulated RAW 264.7 cells. In this network, 138 candidate targets of compounds related to its therapeutic effect on inflammation were identified. In addition, compounds 1, 2, 3 and 4 significantly decreased NO content and the IL-6 levels as well as the expression of COX-2 in LPS-stimulated RAW 264.7 cells.

5.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35739997

RESUMEN

Oxidative stress plays a critical role in the pathogenesis of various neurodegenerative diseases. Increasing evidence suggests the association of mitochondrial abnormalities with oxidative stress-related neural damage. Silibinin, a natural flavonol compound isolated from Silybum marianum, exhibits multiple biological activities. The present study investigated the effects of silibinin on H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Exposure to H2O2 (750 µM) reduced the viability of SH-SY5Y cells, which was coupled with increased reactive oxygen species (ROS), abnormal cell morphology, and mitochondrial dysfunction. Remarkably, silibinin (1, 5, and 10 µM) treatment attenuated the H2O2-induced cell death. Moreover, silibinin reduced ROS production and the levels of malondialdehyde (MDA), increased the levels of superoxide dismutase (SOD) and glutathione (GSH), and increased mitochondrial membrane potential. Moreover, silibinin normalized the expression of nuclear factor 2-related factor 2 (Nrf2)-related and mitochondria-associated proteins. Taken together, our findings demonstrated that silibinin could attenuate H2O2-induced oxidative stress by regulating Nrf2 signaling and improving mitochondrial function in SH-SY5Y cells. The protective effect against oxidative stress suggests silibinin as a potential candidate for preventing neurodegeneration.

6.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2178-2186, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35531734

RESUMEN

The present study investigated the main components of fenugreek(Trigonella foenum-graecum L.) leaf flavonoids(FLFs) and their antioxidant activity. FLFs were prepared and enriched by solvent extraction, and the flavonoids were characterized by high-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS). The protective effect of FLFs against H_2O_2-induced stress damage to L02 hepatocytes was also investigated. Firstly, the cell viability was measured by MTT assay. The oxidative stress injury model was induced by H_2O_2 in L02 cells. The release of lactate dehydrogenase(LDH), the content of reduced glutathione(GSH) and malondialdehyde(MDA), and the activities of superoxide dismutase(SOD) and catalase(CAT) were measured by assay kits. Hoechst fluorescence staining was performed to observe the cell apoptosis. The expression levels of c-Jun N-terminal kinase(JNK), extracellular signal-regulated kinase 1/2(ERK1/2), nuclear factor erythroid-2 related factor 2(Nrf2), heme oxygenase 1(HO-1), and their phosphorylated proteins were detected by Western blot. Based on the MS fragment ion information and data in databases, FLFs contained eight flavonoids with quercetin and kaempferol as the main aglycons. The cell viabi-lity assay revealed that as compared with the conditions in the H_2O_2 treatment group, 3.125-25 µg·mL~(-1) FLFs could increase the viability of L02 cells, reduce LDH release and MDA content in a dose-dependent manner, potentiate the activities of SOD, CAT, and GSH, decrease the phosphorylation of JNK and ERK1/2 proteins, and up-regulate the expression of Nrf2 and HO-1. The results of fluorescence staining showed that the nucleus of the H_2O_2 treatment group showed concentrated and dense strong blue fluorescence, while the blue fluorescence intensity of the FLFs group decreased significantly. FLFs showed a protective effect against H_2O_2-induced oxidative damage in L02 cells, and the underlying mechanism is associated with the enhancement of cell capability in clearing oxygen free radicals and the inhibition of apoptosis by the activation of the MAPKs/Nrf2/HO-1 signaling pathway. The antioxidant effect of fenugreek leaf is related to its rich flavonoids.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Trigonella , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Flavonoides/farmacología , Hepatocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo , Espectrometría de Masas en Tándem , Trigonella/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445549

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases which lacks ideal treatment options. Kaempferol and kaempferide, two natural flavonol compounds isolated from Hippophae rhamnoides L., were reported to exhibit a strong regulatory effect on lipid metabolism, for which the mechanism is largely unknown. In the present study, we investigated the effects of kaempferol and kaempferide on oleic acid (OA)-treated HepG2 cells, a widely used in vitro model of NAFLD. The results indicated an increased accumulation of lipid droplets and triacylglycerol (TG) by OA, which was attenuated by kaempferol and kaempferide (5, 10 and 20 µM). Western blot analysis demonstrated that kaempferol and kaempferide reduced expression of lipogenesis-related proteins, including sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1). Expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding proteins ß (C/EBPß), two adipogenic transcription factors, was also decreased by kaempferol and kaempferide treatment. In addition, western blot analysis also demonstrated that kaempferol and kaempferide reduced expression of heme oxygenase-1 (HO-1) and nuclear transcription factor-erythroid 2-related factor 2 (Nrf2). Molecular docking was performed to identify the direct molecular targets of kaempferol and kaempferide, and their binding to SCD-1, a critical regulator in lipid metabolism, was revealed. Taken together, our findings demonstrate that kaempferol and kaempferide could attenuate OA-induced lipid accumulation and oxidative stress in HepG2 cells, which might benefit the treatment of NAFLD.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Hígado Graso/tratamiento farmacológico , Quempferoles/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Ácido Oléico/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado Graso/patología , Células Hep G2 , Humanos , Lipogénesis , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal
8.
Biomed Pharmacother ; 131: 110800, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152953

RESUMEN

The present study investigated the anti-diabetic effects of Oligostilbenes extracts (Olie) from Iris lactea Pall. var. chinensis (Fisch.) Koidz (I. lactea) and the potential mechanisms, in high-fat-diet (HFD)-induced diabetic mice and 3T3-L1 adipocytes. Olie are a group of major active extracts from I. lactea that have been used as nutraceutical because of their antioxidant activity. Six-week Olie treatment improved fasting blood glucose levels, as well as blood lipid profiles in HFD/streptozocin (STZ)-induced diabetic mice, compared with non-treated mice. Olie treatment upregulated the levels of phosphorylated of AMPK and lipolysis-related proteins, while the hepatic expression of ACC and FAS in diabetic mice was inhibited. In cultured 3T3-L1 cells, Olie (2-15 µg/mL) treatment dose-dependently suppressed the differentiation into mature adipocytes and lowered cellular lipid accumulation. Consistently, Olie reduced expression of adipogenic transcription factors including CCAAT/enhancer-binding protein ß (C/EBPß) and peroxisome proliferator-activated receptor γ (PPARγ). In addition, mitochondrial function in 3T3-L1 adipocytes was improved after Olie treatment. Taken together, our findings indicate that a lipid-lowering effect of Olie in HFD/STZ-induced diabetic mice and adipogenesis/ lipogenesis suppressing effect in 3T3-L1 cells, via regulating the expression of lipid metabolism-related proteins.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Iris/química , Extractos Vegetales/farmacología , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Dieta Alta en Grasa , Relación Dosis-Respuesta a Droga , Hipolipemiantes/administración & dosificación , Hipolipemiantes/aislamiento & purificación , Hipolipemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/administración & dosificación , Estilbenos/administración & dosificación , Estilbenos/aislamiento & purificación , Estreptozocina
9.
Chem Biodivers ; 17(7): e2000187, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32384197

RESUMEN

(20S)-Protopanaxadiol ginsenosides Rg3, Rh2 and PPD have been demonstrated for their anticancer activity. However, the underlying mechanism of their antitumor activity remains unclear. In the present study, we investigated the role of these three ginsenosides on cell proliferation and death of human gastric cancer cells (HGC-27 cells). The sulforhodamine B (SRB) assay, Western blot analysis, fluorescence microscopy, confocal microscopy, high performance liquid chromatography (HPLC) analysis, flow cytometry, and transmission electron microscopy (TEM) were used to evaluate cell proliferation, apoptosis, and autophagy. The results showed that both Rh2 and PPD were more effective than Rg3 in inhibiting HGC-27 cell proliferation and inducing cytoplasmic vacuolation, while no significant changes in apoptosis were observed. Interestingly, cytoplasmic vacuolation and blockade of autophagy flux were observed after treatment with Rh2 and PPD. Rh2 obviously up-regulated the expression of the LC3II and p62. Furthermore, the increase in lysosomal pH and membrane rupture was observed in Rh2-treated and PPD-treated cells. When HGC-27 cells were pretreated with bafilomycin A1, a specific inhibitor of endosomal acidification, cellular vacuolization was increased, and the cell viability was significantly decreased, which indicated that Rh2-induced lysosome-damage accelerated cell death. Furthermore, data derived from mitochondrial analysis showed that excessive mitochondrial reactive oxygen species (ROS) and dysregulation of mitochondrial energy metabolism were caused by Rh2 and PPD treatment in HGC-27 cells. Taken together, these phenomena indicated that Rh2 and PPD inhibited HCG-27 cells proliferation by inducing mitochondria damage, dysfunction of lysosomes, and blockade of autophagy flux. The number of glycosyl groups at C-3 position could have an important effect on the cytotoxicity of Rg3, Rh2 and PPD.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Ginsenósidos/farmacología , Sapogeninas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ginsenósidos/química , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Sapogeninas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
10.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188147

RESUMEN

Proanthocyanidins are the major active compounds extracted from Iris lactea Pall. var. Chinensis (Fisch.) Koidz (I. lactea). Proanthocyanidins exhibit a variety of pharmacological activities such as anti-oxidation, anti-inflammation, anti-tumor, and lowering blood lipids. However, the underlying mechanism of its regulating effect on lipid metabolism in diabetic conditions remains unclear. The present study investigated the effects of I. lactea-derived proanthocyanidins on lipid metabolism in mice of type 2 diabetes mellitus (T2DM). Results demonstrated a beneficial effect of total proanthocyanidins on dysregulated lipid metabolism and hepatic steatosis in high-fat-diet/streptozocin (STZ)-induced T2DM. To identify the mechanisms, six flavan-3-ols were isolated from proanthocyanidins of I. lacteal and their effects on adipogenesis and dexamethasone (Dex)-induced mitochondrial dysfunctions in 3T3-L1 adipocytes were determined. In vitro studies showed flavan-3-ols inhibited adipogenesis and restored mitochondrial function after Dex-induced insulin resistance, being suggested by increased mitochondrial membrane potential, intracellular ATP contents, mitochondrial mass and mitochondrial biogenesis, and reduced reactive oxygen species. Among the six flavan-3-ols, procyanidin B3 and procyanidin B1 exhibited the strongest effects. Our study suggests potential of proanthocyanidins as therapeutic target for diabetes.


Asunto(s)
Adipogénesis/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proantocianidinas/farmacología , Células 3T3-L1 , Animales , Biflavonoides , Peso Corporal/efectos de los fármacos , Catequina , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso , Flavonoides/antagonistas & inhibidores , Flavonoides/química , Resistencia a la Insulina , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Proantocianidinas/química , Especies Reactivas de Oxígeno , Estreptozocina/efectos adversos
11.
Oxid Med Cell Longev ; 2018: 7634362, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967664

RESUMEN

Fenugreek (Trigonella foenum-graecum L.) is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) by promoting the phosphorylation of protein kinase B (AKT) and AMP-activated protein kinase (AMPK). In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS). Results from adenosine triphosphate (ATP) production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.


Asunto(s)
Hipoglucemiantes/farmacología , Resistencia a la Insulina , Mitocondrias/efectos de los fármacos , Extractos Vegetales/farmacología , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Ratones , Extractos Vegetales/química , Polifenoles/farmacología , Trigonella/química
12.
Chem Biodivers ; 14(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28398659

RESUMEN

Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi-preparative reversed-phase liquid chromatography (semi-preparative RPLC) was established as a method to separate three compounds, adenosine, l-tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom. Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3-L1 cells was investigated. The structures of the three compounds were confirmed by UV, 1 H-NMR, and 13 C-NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3-L1 preadipocytes into adipocytes by down-regulating hormone-stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM-induced insulin resistance in differentiated 3T3-L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large-scale extraction and large-quantity preparation of hypaphorine for treatment of obesity and insulin resistance.


Asunto(s)
Adipogénesis/efectos de los fármacos , Caragana/química , Indoles/farmacología , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos/citología , Animales , Diferenciación Celular/efectos de los fármacos , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Indoles/aislamiento & purificación , Ratones , Obesidad/tratamiento farmacológico , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...