Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Qual ; 52(5): 1024-1036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533339

RESUMEN

Vineyard soils can be contaminated by copper (Cu) due to successive applications of fungicides and organic fertilizers. Soil remediation can be addressed by altering soil properties or selecting efficient Cu-extracting cover crops tolerant to Cu toxicity. Our objectives were to synthesize the Cu-extracting efficiency by plant species tested in Brazil, classify them according to Cu resistance to toxicity, and assess the effect of soil properties on attenuating Cu toxicity. We retrieved results from 41 species and cultivars, totaling 565 observations. Freshly added Cu varied between 50 and 600 mg Cu kg-1 of soil across studies. The partition of Cu removal between the above- and below-ground portions was scaled as a logistic variable to facilitate data synthesis. The data were analyzed using the Adaboost machine learning model. Model accuracy (predicted vs. actual values) reached R2  = 0.862 after relating species, cultivar, Cu addition, clay, SOM, pH, soil test P, and Cu as features to predict the logistic target variable. Tissue Cu concentration varied between 7 and 105 mg Cu kg-1 in the shoot and between 73 and 1340 mg Cu kg-1 in the roots. Among soil properties, organic matter and soil test Cu most influenced the accuracy of the model. Phaseolus vulgaris, Brassica juncea, Ricinus communis, Hordeum vulgare, Sorghum vulgare, Cajanus cajan, Solanum lycopersicum, and Crotolaria spectabilis were the most efficient Cu-extracting cover crops, as shown by positive values of the logistic variable (shoot removal > root removal). Those Cu-tolerant plants showed differential capacity to extract Cu in the long run.


Asunto(s)
Contaminantes del Suelo , Biodegradación Ambiental , Granjas , Brasil , Contaminantes del Suelo/análisis , Cobre/análisis , Suelo/química , Productos Agrícolas
2.
Plants (Basel) ; 11(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145819

RESUMEN

Vineyard soils normally do not provide the amount of nitrogen (N) necessary for red wine production. Traditionally, the N concentration in leaves guides the N fertilization of vineyards to reach high grape yields and chemical composition under the ceteris paribus assumption. Moreover, the carryover effects of nutrients and carbohydrates stored by perennials such as grapevines are neglected. Where a well-documented database is assembled, machine learning (ML) methods can account for key site-specific features and carryover effects, impacting the performance of grapevines. The aim of this study was to predict, using ML tools, N management from local features to reach high berry yield and quality in 'Alicante Bouschet' vineyards. The 5-year (2015-2019) fertilizer trial comprised six N doses (0-20-40-60-80-100 kg N ha-1) and three regimes of irrigation. Model features included N dosage, climatic indices, foliar N application, and stem diameter of the preceding season, all of which were indices of the carryover effects. Accuracy of ML models was the highest with a yield cutoff of 14 t ha-1 and a total anthocyanin content (TAC) of 3900 mg L-1. Regression models were more accurate for total soluble solids (TSS), total titratable acidity (TTA), pH, TAC, and total phenolic content (TPC) in the marketable grape yield. The tissue N ranges differed between high marketable yield and TAC, indicating a trade-off about 24 g N kg-1 in the diagnostic leaf. The N dosage predicted varied from 0 to 40 kg N ha-1 depending on target variable, this was calculated from local features and carryover effects but excluded climatic indices. The dataset can increase in size and diversity with the collaboration of growers, which can help to cross over the numerous combinations of features found in vineyards. This research contributes to the rational use of N fertilizers, but with the guarantee that obtaining high productivity must be with adequate composition.

3.
Environ Monit Assess ; 194(9): 623, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907031

RESUMEN

Several studies have reported increased copper (Cu) and zinc (Zn) levels in agricultural soils worldwide, mainly due to organic waste and successive leaf fungicide applications in crops. However, the critical transfer thresholds in soils, which can indicate the real risk of environmental contamination and toxicity to plants, remain poorly understood. This study aimed to define the maximum Cu and Zn adsorption capacity (MAC) and threshold (T-Cu and T-Zn) in different soils in Southern Brazil, which present different clay and organic matter (OM) levels. Bw (Oxisol) and A horizon (Inceptisol) samples were used to obtain soils with clay and OM contents ranging from 4 to 70% and from 0.5 to 9.5%, respectively. Cu and Zn adsorption curves were plotted for MAC determination purposes. Based on Cu and Zn MAC values, different concentrations of these elements were applied to the soils for subsequent quantification of available Cu and Zn levels (Mehlich-1 and water). T-Cu in soils with different clay contents ranged from 81 to 595 mg Cu kg-1, whereas T-Zn, from 195 to 378 mg Zn kg-1. T-Cu in soils with different OM levels ranged from 97 to 667 mg Cu kg-1, whereas T-Zn, from 226 to 495 mg Zn kg-1. T-Cu can be calculated through the equation: T-Cu = 75 × (%CL0.34) × (%OM0.39), whereas T-Zn: T-Zn = 2.7 × (CL) + 126 (by taking into consideration the clay content) and T-Zn = - 9.3 × (%OM)2 + 92.4 × (%OM) + 66 (by taking into consideration OM content). T-Cu and T-Zn can be used by researchers, inspection bodies, technical assistance institutions, and farmers as safe indicators to monitor the potential for environmental contamination.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Arcilla , Cobre/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Compuestos Orgánicos , Suelo , Contaminantes del Suelo/análisis , Zinc/análisis
4.
Ecotoxicol Environ Saf ; 214: 112049, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33647852

RESUMEN

The disposal of untreated sanitary sewage in the soil has several consequences for human health and leads to environmental risks; thus, it is necessary investigating, monitoring and remediating the affected sites. The aims of the current study are to evaluate ecotoxicological effects on Eisenia andrei earthworms exposed to soil subjected to sources of sanitary sewage discharge and to investigate whether prevention values established by the Brazilian legislation for soil quality, associated with the incidence of chemical substances in it, are satisfactory enough to assure the necessary quality for different organisms. Earthworms' behavior, reproduction, acetylcholinesterase activity, catalase, superoxide dismutase and malondialdehyde levels were evaluated. The reproduction and behavior of earthworms exposed to sanitary sewage were adversely affected. Increased superoxide dismutase and catalase activity acted as antioxidant defense mechanism. Significantly increased lipid peroxidation levels and acetylcholinesterase activity inhibition have indicated lipid peroxidation in cell membrane and neurotransmission changes, respectively. Results have confirmed that sanitary sewage induced oxidative stress in earthworms. In addition, based on biochemical data analysis, the integrated biomarker response (IBR) has evidenced different toxicity levels in earthworms between the investigated points. Finally, results have indicated that effluents released into the soil, without proper treatment, lead to contaminant accumulation due to soil saturation and it can hinder different processes and biological development taking place in the soil. In addition, the current study has shown that physical-chemical analyses alone are not enough to assess soil quality, since it is also requires adopting an ecotoxicological approach. Brazilian legislation focused on soil quality must be revised and new guiding values must be proposed.


Asunto(s)
Oligoquetos/fisiología , Contaminantes del Suelo/análisis , Animales , Antioxidantes/metabolismo , Brasil , Catalasa/metabolismo , Ecotoxicología , Contaminación Ambiental/análisis , Humanos , Malondialdehído/metabolismo , Oligoquetos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Aguas del Alcantarillado , Suelo/química , Superóxido Dismutasa/metabolismo
5.
Int J Phytoremediation ; 23(7): 726-735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380178

RESUMEN

Grass species native to South American can have mechanisms to tolerate copper (Cu) excess, which improves their use to phytoremediate Cu-contaminated soils . The aims of the present study are to assess the tolerance of grass species native to South American grasslands to copper-contaminated soils, as well as their adaptive responses under high Cu-stressed condition and to identify native grass species presenting the highest potential to be used for phytoremediation purposes. Soil samples were air-dried and their acidity, phosphorus and potassium levels were corrected, and the samples were incubated. Three Cu levels were used in the experiment: natural (Dose 0), with added of 40 mg kg-1 of Cu and with added of 80 mg kg-1 of Cu. Three Axonopus affinis, Paspalum notatum and Paspalum plicatulum seedlings were transferred to 5-L pots filled with soil in August and grown for 121 days. Soil solution was collected during cultivation with the aid of Rhizon lysimeters. Main concentrations of cations and anions, dissolved organic carbon and pH in the soil solution were analyzed and the ionic speciation was carried out. Cu toxicity impaired the growth of grass species native to South America, since Cu excess led to both changes in root morphology and nutritional unbalance. Among all assessed native species, Paspalum plicatulum was the one presenting the greatest potential to phytostabilize in Cu-contaminated soils, since it mainly accumulates Cu absorbed in the roots; therefore, its intercropping with grapevines is can be beneficial in Cu-contaminated soils.


Asunto(s)
Cobre , Contaminantes del Suelo , Biodegradación Ambiental , Cobre/análisis , Pradera , Suelo , Contaminantes del Suelo/análisis
6.
Sci. agric ; 78(3): e20190157, 2021. ilus, tab, graf
Artículo en Inglés | VETINDEX | ID: biblio-1497950

RESUMEN

This study evaluated P pools after nine years of successive application of either pig slurry (PS) or deep pig litter (DL) in a no-till Ultisol from southern Brazil. The experiment was established in Dec 2002 with the treatments control, application of 90 and 180 kg N ha−1 N as PS and as DL. In Mar 2010, soil samples were taken at six layers up to 30 cm deep. Total organic and inorganic P were assessed by the ignition method, and P compounds classes were evaluated by 31P-NMR spectroscopy. Total soil P increased proportionally with the P amount applied via DL and PS. Only DL application increased soil organic P, mainly at the highest dose and in the uppermost soil layers. The application of high doses of manure to these soils under no-till to meet crop N demands significantly increased P accumulation at the soil surface, especially with DL. This, in turn, increases the risk of contamination of water bodies due to P transfer from soil to rivers via runoff. The ignition method overestimates organic P compared to P-NMR. The highest proportion of organic P estimated by the ignition and P-NMR methods, at surface layers in the control suggests that inorganic P is added to the plots treated, increasing inorganic P and decreasing organic P. Moreover, with no P additions to the control, inorganic soil P is removed by plants, causing an apparent increase in the organic P proportion.


Asunto(s)
Estiércol , Fosfatos , Fósforo/análisis , Química del Suelo , Análisis Espectral , Porcinos
7.
Sci. agric. ; 78(3): e20190157, 2021. ilus, tab, graf
Artículo en Inglés | VETINDEX | ID: vti-29329

RESUMEN

This study evaluated P pools after nine years of successive application of either pig slurry (PS) or deep pig litter (DL) in a no-till Ultisol from southern Brazil. The experiment was established in Dec 2002 with the treatments control, application of 90 and 180 kg N ha−1 N as PS and as DL. In Mar 2010, soil samples were taken at six layers up to 30 cm deep. Total organic and inorganic P were assessed by the ignition method, and P compounds classes were evaluated by 31P-NMR spectroscopy. Total soil P increased proportionally with the P amount applied via DL and PS. Only DL application increased soil organic P, mainly at the highest dose and in the uppermost soil layers. The application of high doses of manure to these soils under no-till to meet crop N demands significantly increased P accumulation at the soil surface, especially with DL. This, in turn, increases the risk of contamination of water bodies due to P transfer from soil to rivers via runoff. The ignition method overestimates organic P compared to P-NMR. The highest proportion of organic P estimated by the ignition and P-NMR methods, at surface layers in the control suggests that inorganic P is added to the plots treated, increasing inorganic P and decreasing organic P. Moreover, with no P additions to the control, inorganic soil P is removed by plants, causing an apparent increase in the organic P proportion.(AU)


Asunto(s)
Fósforo/análisis , Química del Suelo , Estiércol , Fosfatos , Porcinos , Análisis Espectral
8.
Int J Phytoremediation ; 20(14): 1380-1388, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30652487

RESUMEN

Forest species Angico-Vermelho (Parapiptadenia rigida (Bentham) Brenan) is an alternative for the revegetation of areas contaminated with high levels of heavy metals such as copper (Cu). However, excess Cu may cause toxicity to plants, which is why the use of soil amendments can facilitate cultivation by reducing the availability of Cu in the soil. The aim of this study was to assess how the use of amendment can contribute to growth and nutritional status as well as reduce oxidative stress in Angico-Vermelho grown in Cu-contaminated soil. Samples of a Typic Hapludalf soil containing high Cu content were used for the application of four amendments (limestone, organic compost, Ca silicate and zeolite), in addition to a control treatment. The treatments were arranged in a completely randomized design, with four replicates. The use of amendments decreased Cu content available in soil and contributed to improve both plant nutritional status and its antioxidant response expressed by enzymatic activity. The application of the amendments, especially zeolite and Ca silicate, increased dry matter yield of Angico-Vermelho. Thus, the results presented here suggest that the use of amendments contributes to improving Cu-contaminated soils and favors revegetation with Angico-Vermelho.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Cobre/análisis , Estado Nutricional , Suelo/química
9.
Environ Monit Assess ; 187(4): 209, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25805372

RESUMEN

Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.


Asunto(s)
Crianza de Animales Domésticos , Monitoreo del Ambiente , Fósforo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Eliminación de Residuos Líquidos/métodos , Animales , Brasil , Estiércol , Lluvia , Porcinos , Agua , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA