Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(3): eadd2365, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652521

RESUMEN

Nitrogen oxides (NOx) play a central role in catalyzing tropospheric ozone formation. Nitrogen dioxide (NO2) has recently reemerged as a key target for air pollution control measures, and observational evidence points toward a limited understanding of ozone in high-NOx environments. A complete understanding of the mechanisms controlling the rapid atmospheric cycling between ozone (O3)-nitric oxide (NO)-NO2 in high-NOx regimes at the surface is therefore paramount but remains challenging because of competing dynamical and chemical effects. Here, we present long-term eddy covariance measurements of O3, NO, and NO2, over an urban area, that allow disentangling important physical and chemical processes. When generalized, our findings suggest that the depositional O3 flux near the surface in urban environments is negligible compared to the flux caused by chemical conversion of O3. This leads to an underestimation of the Leighton ratio and is a key process for modulating urban NO2 mixing ratios. As a consequence, primary NO2 emissions have been significantly overestimated.

2.
Atmos Meas Tech ; 14(1): 647-663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643474

RESUMEN

Analysis of formaldehyde measurements by the Pandora spectrometer systems between 2016 and 2019 suggested that there was a temperature dependent process inside Pandora head sensor that emitted formaldehyde. Some parts in the head sensor were manufactured from thermal plastic polyoxymethylene homopolimer (E.I. Du Pont de Nemour & Co., USA: POM-H Delrin®) and were responsible for formaldehyde production. Laboratory analysis of the four Pandora head sensors showed that internal formaldehyde production had exponential temperature dependence with a damping coefficient of 0.0911±0.0024 °C-1 and the exponential function amplitude ranging from 0.0041 DU to 0.049 DU. No apparent dependency on the head sensor age and heating/cooling rates was detected. The total amount of formaldehyde internally generated by the POM-H Delrin components and contributing to the direct sun measurements were estimated based on the head sensor temperature and solar zenith angle of the measurements. Measurements in winter, during colder (<10°C) days in general and at high solar zenith angles (> 75 °) were minimally impacted. Measurements during hot days (>28°C) and small solar zenith angles had up to 1 DU (2.69×1016 molecules/cm2) contribution from POM-H Delrin parts. Multi-axis differential slant column densities were minimally impacted (< 0.01 DU) due to the reference spectrum collected within a short time period with a small difference in head sensor temperature. Three new POM-H Delrin free Pandora head sensors (manufactured in summer 2019) were evaluated for temperature dependent attenuation across the entire spectral range (300 to 530 nm). No formaldehyde or any other absorption above the instrumental noise was observed across the entire spectral range.

3.
Atmos Meas Tech ; 12(11): 6091-6111, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33014172

RESUMEN

NASA deployed the GeoTASO airborne UV-Visible spectrometer in May-June 2017 to produce high resolution (approximately 250 × 250 m) gapless NO2 datasets over the western shore of Lake Michigan and over the Los Angeles Basin. The results collected show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO2 observations (r2=0.91 and slope of 1.03). Apparent disagreements between the two measurements can be sensitive to the coincidence criteria and are often associated with large local variability, including rapid temporal changes and spatial heterogeneity that may be observed differently by the sunward viewing Pandora observations. The gapless mapping strategy executed during the 2017 GeoTASO flights provides data suitable for averaging to coarser areal resolutions to simulate satellite retrievals. As simulated satellite pixel area increases to values typical of TEMPO, TROPOMI, and OMI, the agreement with Pandora measurements degraded, particularly for the most polluted columns as localized large pollution enhancements observed by Pandora and GeoTASO are spatially averaged with nearby less-polluted locations within the larger area representative of the satellite spatial resolutions (aircraft-to-Pandora slope: TEMPO scale=0.88; TROPOMI scale=0.77; OMI scale=0.57). In these two regions, Pandora and TEMPO or TROPOMI have the potential to compare well at least up to pollution scales of 30×1015 molecules cm-2. Two publicly available OMI tropospheric NO2 retrievals are both found to be biased low with respect to these Pandora observations. However, the agreement improves when higher resolution a priori inputs are used for the tropospheric air mass factor calculation (NASA V3 Standard Product slope = 0.18 and Berkeley High Resolution Product slope=0.30). Overall, this work explores best practices for satellite validation strategies with Pandora direct-sun observations by showing the sensitivity to product spatial resolution and demonstrating how the high spatial resolution NO2 data retrieved from airborne spectrometers, such as GeoTASO, can be used with high temporal resolution ground-based column observations to evaluate the influence of spatial heterogeneity on validation results.

4.
Atmos Chem Phys ; 11: 4943-4961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33424951

RESUMEN

The Korea-United States Air Quality Study (KORUS-AQ) conducted during May-June 2016 offered the first opportunity to evaluate direct-sun observations of formaldehyde (HCHO) total column densities with improved Pandora spectrometer instruments. The measurements highlighted in this work were conducted both in the Seoul megacity area at the Olympic Park site (37.5232° N, 27.1260° E; 26 ma.s.l.) and at a nearby rural site downwind of the city at the Mount Taehwa research forest site (37.3123° N, 127.3106° E; 160ma.s.l.). Evaluation of these measurements was made possible by concurrent ground-based in situ observations of HCHO at both sites as well as overflight by the NASA DC-8 research aircraft. The flights provided in situ measurements of HCHO to characterize its vertical distribution in the lower troposphere (0-5km). Diurnal variation in HCHO total column densities followed the same pattern at both sites, with the minimum daily values typically observed between 6:00 and 7:00 local time, gradually increasing to a maximum between 13:00 and 17:00 before decreasing into the evening. Pandora vertical column densities were compared with those derived from the DC-8 HCHO in situ measured profiles augmented with in situ surface concentrations below the lowest altitude of the DC-8 in proximity to the ground sites. A comparison between 49 column densities measured by Pandora vs. aircraft-integrated in situ data showed that Pandora values were larger by 16% with a constant offset of 0.22DU (Dobson units; R 2 = 0.68). Pandora HCHO columns were also compared with columns calculated from the surface in situ measurements over Olympic Park by assuming a well-mixed lower atmosphere up to a ceilometer-measured mixed-layer height (MLH) and various assumptions about the small residual HCHO amounts in the free troposphere up to the tropopause. The best comparison (slope = 1.03±0.03; intercept = 0.29±0.02DU; and R 2 = 0.78±0.02) was achieved assuming equal mixing within ceilometer-measured MLH combined with an exponential profile shape. These results suggest that diurnal changes in HCHO surface concentrations can be reasonably estimated from the Pandora total column and information on the mixed-layer height. More work is needed to understand the bias in the intercept and the slope relative to columns derived from the in situ aircraft and surface measurements.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31534946

RESUMEN

With the near-future launch of geostationary pollution monitoring satellite instruments over North America, East Asia, and Europe, the air quality community is preparing for an integrated global atmospheric composition observing system at unprecedented spatial and temporal resolutions. One of the ways that NASA has supported this community preparation is through demonstration of future space-borne capabilities using the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument. This paper integrates repeated high-resolution maps from GeoTASO, ground-based Pandora spectrometers, and low Earth orbit measurements from the Ozone Mapping and Profiler Suite (OMPS), for case studies over two metropolitan areas: Seoul, South Korea on June 9th, 2016 and Los Angeles, California on June 27th, 2017. This dataset provides a unique opportunity to illustrate how geostationary air quality monitoring platforms and ground-based remote sensing networks will close the current spatiotemporal observation gap. GeoTASO observes large differences in diurnal behavior between these urban areas, with NO2 accumulating within the Seoul Metropolitan Area through the day but NO2 peaking in the morning and decreasing throughout the afternoon in the Los Angeles Basin. In both areas, the earliest morning maps exhibit spatial patterns similar to emission source areas (e.g., urbanized valleys, roadways, major airports). These spatial patterns change later in the day due to boundary layer dynamics, horizontal transport, and chemistry. The nominal resolution of GeoTASO is finer than will be obtained from geostationary platforms, but when NO2 data over Los Angeles are up-scaled to the expected resolution of TEMPO, spatial features discussed are conserved. Pandora instruments installed in both metropolitan areas capture the diurnal patterns observed by GeoTASO, continuously and over longer time periods, and will play a critical role in validation of the next generation of satellite measurement.. These case studies demonstrate that different regions can have diverse diurnal patterns and that day-to-day variability due to meteorology or anthropogenic patterns such as weekday/weekend variations in emissions is large. Low Earth orbit measurements, despite their inability to capture the diurnal patterns at fine spatial resolution, will be essential for intercalibrating the geostationary radiances and cross-validating the geostationary retrievals in an integrated global observing system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...