Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838675

RESUMEN

Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion. C. albicans depleted simple sugars in the ceca of gnotobiotic mice but required oxygen to grow on these resources in vitro, pointing to anaerobiosis as a potential factor limiting growth in the gut. Clostridia species limit oxygen availability in the large intestine by producing butyrate, which activates peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling to maintain epithelial hypoxia. Streptomycin treatment depleted Clostridia-derived butyrate to increase epithelial oxygenation, but the PPAR-γ agonist 5-aminosalicylic acid (5-ASA) functionally replaced Clostridia species to restore epithelial hypoxia and colonization resistance against C. albicans. Additionally, probiotic Escherichia coli required oxygen respiration to prevent a post-antibiotic bloom of C. albicans, further supporting the role of oxygen in colonization resistance. We conclude that limited access to oxygen maintains colonization resistance against C. albicans.

2.
Cell ; 187(5): 1191-1205.e15, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366592

RESUMEN

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism. The restoration of sorbitol catabolism by inoculation with probiotic Escherichia coli protected mice against sorbitol intolerance but did not restore Clostridia abundance. Inoculation with the butyrate producer Anaerostipes caccae restored a normal Clostridia abundance, which protected mice against sorbitol-induced diarrhea even when the probiotic was cleared. Butyrate restored Clostridia abundance by stimulating epithelial peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling to restore epithelial hypoxia in the colon. Collectively, these mechanistic insights identify microbial sorbitol catabolism as a potential target for approaches for the diagnosis, treatment, and prevention of sorbitol intolerance.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Microbioma Gastrointestinal , Sorbitol , Animales , Ratones , Antibacterianos/farmacología , Butiratos , Clostridium , Escherichia coli , Sorbitol/metabolismo
3.
Microbiome ; 9(1): 174, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412707

RESUMEN

BACKGROUND: The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood. METHODS: Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa. Causality was investigated by engrafting germ-free or antibiotic-treated mice with complex or defined microbial communities. RESULTS: We noted that a depletion of Clostridia and Erysipelotrichia from the gut microbiota triggered by antibiotic treatment was associated with an increase in the cecal concentration of sugar acids and sugar alcohols (polyols). Notably, when we inoculated germ-free mice with a defined microbial community of 14 Clostridia and 3 Erysipelotrichia isolates, we observed the inverse, with a marked decrease in the concentrations of sugar acids and polyols in cecal contents. The carbohydrate footprint produced by the defined microbial community was similar to that observed in gnotobiotic mice receiving a cecal microbiota transplant from conventional mice. Supplementation with sorbitol, a polyol used as artificial sweetener, increased cecal sorbitol concentrations in antibiotic-treated mice, which was abrogated after inoculation with a Clostridia isolate able to grow on sorbitol in vitro. CONCLUSIONS: We conclude that consumption of sugar alcohols by Clostridia and Erysipelotrichia species depletes these metabolites from the intestinal lumen during homeostasis. Video abstract.


Asunto(s)
Ciego/microbiología , Microbioma Gastrointestinal , Alcoholes del Azúcar/metabolismo , Animales , Ciego/metabolismo , Clostridiaceae/clasificación , Clostridiaceae/metabolismo , Firmicutes/clasificación , Firmicutes/metabolismo , Vida Libre de Gérmenes , Ratones
4.
Science ; 373(6556): 813-818, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385401

RESUMEN

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.


Asunto(s)
Colon/fisiología , Dieta Alta en Grasa , Escherichia coli/metabolismo , Mucosa Intestinal/fisiología , Metilaminas/metabolismo , Animales , Hipoxia de la Célula , Colina/administración & dosificación , Colina/metabolismo , Colon/citología , Metabolismo Energético , Células Epiteliales/fisiología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heces/microbiología , Microbioma Gastrointestinal , Inflamación , Mucosa Intestinal/metabolismo , Masculino , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nitratos/metabolismo , Obesidad , Consumo de Oxígeno
5.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468700

RESUMEN

5-Aminosalicylic acid (5-ASA), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a widely used first-line medication for the treatment of ulcerative colitis, but its anti-inflammatory mechanism is not fully resolved. Here, we show that 5-ASA ameliorates colitis in dextran sulfate sodium (DSS)-treated mice by activating PPAR-γ signaling in the intestinal epithelium. DSS-induced colitis was associated with a loss of epithelial hypoxia and a respiration-dependent luminal expansion of Escherichia coli, which could be ameliorated by treatment with 5-ASA. However, 5-ASA was no longer able to reduce inflammation, restore epithelial hypoxia, or blunt an expansion of E. coli in DSS-treated mice that lacked Pparg expression specifically in the intestinal epithelium. These data suggest that the anti-inflammatory activity of 5-ASA requires activation of epithelial PPAR-γ signaling, thus pointing to the intestinal epithelium as a potential target for therapeutic intervention in ulcerative colitis.IMPORTANCE An expansion of Enterobacterales in the fecal microbiota is a microbial signature of dysbiosis that is linked to many noncommunicable diseases, including ulcerative colitis. Here, we used Escherichia coli, a representative of the Enterobacterales, to show that its dysbiotic expansion during colitis can be remediated by modulating host epithelial metabolism. Dextran sulfate sodium (DSS)-induced colitis reduced mitochondrial activity in the colonic epithelium, thereby increasing the amount of oxygen available to fuel an E. coli expansion through aerobic respiration. Activation of epithelial peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling with 5-aminosalicylic acid (5-ASA) was sufficient to restore mitochondrial activity and blunt a dysbiotic E. coli expansion. These data identify the host's epithelial metabolism as a potential treatment target to remediate microbial signatures of dysbiosis, such as a dysbiotic E. coli expansion in the fecal microbiota.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Colitis/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Mesalamina/farmacología , PPAR gamma/genética , Animales , Colitis/genética , Colitis/microbiología , Colitis/patología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Sulfato de Dextran/administración & dosificación , Disbiosis/genética , Disbiosis/microbiología , Disbiosis/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Regulación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , PPAR gamma/agonistas , PPAR gamma/metabolismo , Resultado del Tratamiento
6.
Cell Host Microbe ; 28(6): 789-797.e5, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33301718

RESUMEN

The colonic microbiota exhibits cross-sectional heterogeneity, but the mechanisms that govern its spatial organization remain incompletely understood. Here we used Citrobacter rodentium, a pathogen that colonizes the colonic surface, to identify microbial traits that license growth and survival in this spatial niche. Previous work showed that during colonic crypt hyperplasia, type III secretion system (T3SS)-mediated intimate epithelial attachment provides C. rodentium with oxygen for aerobic respiration. However, we find that prior to the development of colonic crypt hyperplasia, T3SS-mediated intimate attachment is not required for aerobic respiration but for hydrogen peroxide (H2O2) respiration using cytochrome c peroxidase (Ccp). The epithelial NADPH oxidase NOX1 is the primary source of luminal H2O2 early after C. rodentium infection and is required for Ccp-dependent growth. Our results suggest that NOX1-derived H2O2 is a resource that governs bacterial growth and survival in close proximity to the mucosal surface during gut homeostasis.


Asunto(s)
Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/metabolismo , Citocromo-c Peroxidasa/fisiología , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasa 1/fisiología , Anaerobiosis , Animales , Colon/microbiología , ADN Bacteriano , Heces/microbiología , Femenino , Vida Libre de Gérmenes , Homeostasis , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Ribosómico 16S , Organismos Libres de Patógenos Específicos , Sistemas de Secreción Tipo III/fisiología
7.
Cell Host Microbe ; 28(2): 273-284.e6, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32668218

RESUMEN

The clinical spectra of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) intersect to form a scantily defined overlap syndrome, termed pre-IBD. We show that increased Enterobacteriaceae and reduced Clostridia abundance distinguish the fecal microbiota of pre-IBD patients from IBS patients. A history of antibiotics in individuals consuming a high-fat diet was associated with the greatest risk for pre-IBD. Exposing mice to these risk factors resulted in conditions resembling pre-IBD and impaired mitochondrial bioenergetics in the colonic epithelium, which triggered dysbiosis. Restoring mitochondrial bioenergetics in the colonic epithelium with 5-amino salicylic acid, a PPAR-γ (peroxisome proliferator-activated receptor gamma) agonist that stimulates mitochondrial activity, ameliorated pre-IBD symptoms. As with patients, mice with pre-IBD exhibited notable expansions of Enterobacteriaceae that exacerbated low-grade mucosal inflammation, suggesting that remediating dysbiosis can alleviate inflammation. Thus, environmental risk factors cooperate to impair epithelial mitochondrial bioenergetics, thereby triggering microbiota disruptions that exacerbate inflammation and distinguish pre-IBD from IBS.


Asunto(s)
Antibacterianos/efectos adversos , Dieta Alta en Grasa/efectos adversos , Disbiosis/patología , Metabolismo Energético/fisiología , Enfermedades Inflamatorias del Intestino/microbiología , Síndrome del Colon Irritable/microbiología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Disbiosis/inducido químicamente , Enterobacteriaceae/crecimiento & desarrollo , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Complejo de Antígeno L1 de Leucocito/metabolismo , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , PPAR gamma/agonistas
8.
mBio ; 10(5)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575772

RESUMEN

Intestinal inflammation is a risk factor for colorectal cancer formation, but the underlying mechanisms remain unknown. Here, we investigated whether colitis alters the colonic microbiota to enhance its cancer-inducing activity. Colitis increased epithelial oxygenation in the colon of mice and drove an expansion of Escherichia coli within the gut-associated microbial community through aerobic respiration. An aerobic expansion of colibactin-producing E. coli was required for the cancer-inducing activity of this pathobiont in a mouse model of colitis-associated colorectal cancer formation. We conclude that increased epithelial oxygenation in the colon is associated with an expansion of a prooncogenic driver species, thereby increasing the cancer-inducing activity of the microbiota.IMPORTANCE One of the environmental factors important for colorectal cancer formation is the gut microbiota, but the habitat filters that control its cancer-inducing activity remain unknown. Here, we show that chemically induced colitis elevates epithelial oxygenation in the colon, thereby driving an expansion of colibactin-producing Escherichia coli, a prooncogenic driver species. These data suggest that elevated epithelial oxygenation is a potential risk factor for colorectal cancer formation because the consequent changes in the gut habitat escalate the cancer-inducing activity of the microbiota.


Asunto(s)
Carcinogénesis , Colitis/microbiología , Neoplasias Colorrectales/microbiología , Infecciones por Escherichia coli/complicaciones , Microbioma Gastrointestinal , Oxígeno/metabolismo , Aerobiosis , Animales , Colitis/inducido químicamente , Colitis/complicaciones , Sulfato de Dextran , Escherichia coli , Infecciones por Escherichia coli/microbiología , Femenino , Ratones , Ratones Endogámicos C57BL , Péptidos/metabolismo , Policétidos/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G602-G608, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509433

RESUMEN

Advances in data collection technologies reveal that an imbalance (dysbiosis) in the composition of host-associated microbial communities (microbiota) is linked to many human illnesses. This association makes dysbiosis a central concept for understanding how the human microbiota contributes to health and disease. However, it remains problematic to define the term dysbiosis by cataloguing microbial species names. Here, we discuss how incorporating the germ-organ concept, ecological assumptions, and immunological principles into a theoretical framework for microbiota research provides a functional definition for dysbiosis. The generation of such a framework suggests that the next logical step in microbiota research will be to illuminate the mechanistic underpinnings of dysbiosis, which often involves a weakening of immune mechanisms that balance our microbial communities.


Asunto(s)
Disbiosis/microbiología , Microbioma Gastrointestinal , Animales , Disbiosis/etiología , Humanos , Metagenoma
10.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975806

RESUMEN

Metabolomics is a powerful tool for measuring the functional output of the microbiota. Currently, there are few established workflows for analysis downstream of metabolite identification. Here, we introduce omu, an R package designed for assigning compound hierarchies and linking compounds to corresponding enzyme and gene annotations for organisms of interest.

11.
Nat Microbiol ; 4(6): 1057-1064, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30911125

RESUMEN

Lack of reproducibility is a prominent problem in biomedical research. An important source of variation in animal experiments is the microbiome, but little is known about specific changes in the microbiota composition that cause phenotypic differences. Here, we show that genetically similar laboratory mice obtained from four different commercial vendors exhibited marked phenotypic variation in their susceptibility to Salmonella infection. Faecal microbiota transplant into germ-free mice replicated donor susceptibility, revealing that variability was due to changes in the gut microbiota composition. Co-housing of mice only partially transferred protection against Salmonella infection, suggesting that minority species within the gut microbiota might confer this trait. Consistent with this idea, we identified endogenous Enterobacteriaceae, a low-abundance taxon, as a keystone species responsible for variation in the susceptibility to Salmonella infection. Protection conferred by endogenous Enterobacteriaceae could be modelled by inoculating mice with probiotic Escherichia coli, which conferred resistance by using its aerobic metabolism to compete with Salmonella for resources. We conclude that a mechanistic understanding of phenotypic variation can accelerate development of strategies for enhancing the reproducibility of animal experiments.


Asunto(s)
Enterobacteriaceae/fisiología , Microbioma Gastrointestinal , Interacciones Microbianas/fisiología , Salmonelosis Animal/microbiología , Experimentación Animal , Animales , Biomarcadores , Vías Biosintéticas , Modelos Animales de Enfermedad , Enterobacteriaceae/clasificación , Escherichia coli/fisiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Vida Libre de Gérmenes , Ratones , Ratones Endogámicos C57BL , Fenotipo , Probióticos , Reproducibilidad de los Resultados , Salmonella
12.
Cell Host Microbe ; 25(1): 128-139.e5, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30629913

RESUMEN

Neonates are highly susceptible to infection with enteric pathogens, but the underlying mechanisms are not resolved. We show that neonatal chick colonization with Salmonella enterica serovar Enteritidis requires a virulence-factor-dependent increase in epithelial oxygenation, which drives pathogen expansion by aerobic respiration. Co-infection experiments with an Escherichia coli strain carrying an oxygen-sensitive reporter suggest that S. Enteritidis competes with commensal Enterobacteriaceae for oxygen. A combination of Enterobacteriaceae and spore-forming bacteria, but not colonization with either community alone, confers colonization resistance against S. Enteritidis in neonatal chicks, phenocopying germ-free mice associated with adult chicken microbiota. Combining spore-forming bacteria with a probiotic E. coli isolate protects germ-free mice from pathogen colonization, but the protection is lost when the ability to respire oxygen under micro-aerophilic conditions is genetically ablated in E. coli. These results suggest that commensal Enterobacteriaceae contribute to colonization resistance by competing with S. Enteritidis for oxygen, a resource critical for pathogen expansion.


Asunto(s)
Enterobacteriaceae/crecimiento & desarrollo , Enterobacteriaceae/fisiología , Oxígeno/metabolismo , Salmonella/crecimiento & desarrollo , Simbiosis , Animales , Animales Recién Nacidos , Ciego/microbiología , Ciego/patología , Pollos , Coinfección , Enterobacteriaceae/genética , Escherichia coli , Femenino , Microbioma Gastrointestinal , Masculino , Ratones , Probióticos , Salmonella/genética , Salmonella/patogenicidad , Salmonelosis Animal , Salmonella enteritidis/crecimiento & desarrollo , Salmonella enteritidis/patogenicidad , Esporas Bacterianas/crecimiento & desarrollo , Factores de Virulencia
13.
FEMS Microbiol Rev ; 42(4): 527-541, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790924

RESUMEN

Typhoid and paratyphoid fever are severe systemic infections caused by human-adapted typhoidal Salmonella serovars that are indistinguishable in their clinical presentation, but differ from human gastroenteritis caused by zoonotic non-typhoidal Salmonella serovars. Typhoidal Salmonella serovars evolved from ancestral gastrointestinal pathogens through genetic changes that supported a change in pathogen ecology. Typhoidal Salmonella serovars share virulence properties that were acquired through convergent evolution and therefore this group is not defined by the presence of shared virulence genes that are absent from non-typhoidal Salmonella serovars. One feature distinguishing typhoidal Salmonella serovars from gastrointestinal pathogens is their ability to avert the respiratory burst of neutrophils. Furthermore, typhoidal Salmonella serovars possess several mechanisms to moderate intestinal inflammation, which are absent from non-typhoidal Salmonella serovars. Collectively, these shared virulence mechanisms enable typhoidal Salmonella serovars to breach an intact mucosal barrier and reach the gall bladder, a new ecological niche that is important because chronic gall bladder carriage promotes disease transmission. Thus, the morbidity and mortality resulting from the severe systemic infection that enables typhoidal Salmonella serovars to reach the gall bladder is coupled to their capacity for infectious transmission, which is the principal driving force of natural selection directing the emergence of this pathovar.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Patógeno/fisiología , Salmonella/fisiología , Animales , Humanos , Salmonella/patogenicidad , Serogrupo , Fiebre Tifoidea/microbiología
14.
Science ; 357(6351): 570-575, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28798125

RESUMEN

Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward ß-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Asunto(s)
Disbiosis/metabolismo , Disbiosis/microbiología , Enterobacteriaceae/patogenicidad , Microbioma Gastrointestinal , Óxido Nítrico Sintasa de Tipo II/metabolismo , PPAR gamma/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Anilidas/farmacología , Animales , Antibacterianos/farmacología , Butiratos/metabolismo , Células CACO-2 , Clostridium/efectos de los fármacos , Clostridium/metabolismo , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Disbiosis/inducido químicamente , Disbiosis/genética , Enterobacteriaceae/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Expresión Génica , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Transducción de Señal , Estreptomicina/farmacología
15.
Nature ; 532(7599): 394-7, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27007849

RESUMEN

Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1α. Once activated, IRE1α recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-κB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Transducción de Señal , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Brucella abortus/inmunología , Brucella abortus/patogenicidad , Línea Celular , Ditiotreitol/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/antagonistas & inhibidores , Femenino , Humanos , Inmunidad Innata , Inflamación/inducido químicamente , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
16.
Immunobiology ; 221(3): 468-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26626201

RESUMEN

Co-infections with malaria and non-typhoidal Salmonella serotypes (NTS) can present as life-threatening bacteremia, in contrast to self-resolving NTS diarrhea in healthy individuals. In previous work with our mouse model of malaria/NTS co-infection, we showed increased gut mastocytosis and increased ileal and plasma histamine levels that were temporally associated with increased gut permeability and bacterial translocation. Here, we report that gut mastocytosis and elevated plasma histamine are also associated with malaria in an animal model of falciparum malaria, suggesting a broader host distribution of this biology. In support of mast cell function in this phenotype, malaria/NTS co-infection in mast cell-deficient mice was associated with a reduction in gut permeability and bacteremia. Further, antihistamine treatment reduced bacterial translocation and gut permeability in mice with malaria, suggesting a contribution of mast cell-derived histamine to GI pathology and enhanced risk of bacteremia during malaria/NTS co-infection.


Asunto(s)
Histamina/metabolismo , Malaria/metabolismo , Malaria/parasitología , Mastocitos/metabolismo , Membrana Mucosa/metabolismo , Membrana Mucosa/parasitología , Animales , Coinfección , Modelos Animales de Enfermedad , Femenino , Histamina/sangre , Antagonistas de los Receptores Histamínicos/farmacología , Macaca mulatta , Malaria/tratamiento farmacológico , Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Mastocitos/inmunología , Mastocitos/patología , Mastocitosis/inmunología , Mastocitosis/metabolismo , Ratones , Ratones Noqueados , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/microbiología , Permeabilidad , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...