Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762100

RESUMEN

Salinity influences the level of antioxidants and proline content, which are both involved in the regulation of stress responses in plants. To examine the interplay between the antioxidant system and proline metabolism in plant stress acclimation, explants of Lycium ruthenicum were subjected to NaCl treatments, and the growth characteristics, antioxidant enzyme activities, proline accumulation, and metabolic enzyme content were analyzed. The results revealed that NaCl concentrations between 50 to 150 mM have a positive effect on the growth of L. ruthenicum explants. Increasing NaCl concentrations elevated the activities of superoxide dismutase (SOD) and catalase (CAT), while hydrogen peroxide (H2O2) content was inhibited, suggesting that the elevated antioxidants play a central protective role in superoxide anion (O2•-) and H2O2 scavenging processes in response to NaCl treatments. Also, high proline levels also protect antioxidant enzyme machinery, thus protecting the plants from oxidative damage and enhancing osmotic adjustment. Increasing levels of pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR), and ornithine-δ-aminotransferase (δ-OAT) were observed, resulting in elevated level of proline. In addition, the expression levels of LrP5CS1, -2, -3, LrOAT-1, and -2 were promoted in NaCl treatments. According to the combined analysis of metabolic enzyme activities and their relative expression, it is confirmed that the glutamate (Glu) pathway is activated in L. ruthenicum faced with different levels of NaCl concentrations. However, Glu supplied by δ-OAT is fed back into the main pathway for proline metabolism.

2.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203005

RESUMEN

Growing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins. The greenhouse used in the study consisted of a plastic film for growing pumpkins. Five different sensors labeled from A1 to A5 measured the air temperature, humidity, soil temperature, soil humidity, and illumination at five different locations. We used two methods, error-based sensor placement and entropy-based sensor placement, to evaluate optimisation. We selected A3 sensor locations where the monitored data were close to the reference value, i.e., the average data of all measurement locations and parameters. Using this method, we selected sensor positions to monitor the influence of external parameters on the maturity of pumpkins. These methods enable the determination of optimal sensor locations to represent the entire facility environment and detect areas with significant environmental disparities. Our study provides an accurate measurement of the internal environment of a greenhouse and properly selects the base installation locations of sensors in the pumpkin greenhouse.


Asunto(s)
Cucurbita , Entropía , Ambiente Controlado , Humedad , Suelo
3.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235426

RESUMEN

Plant growth regulators (PGRs) are natural hormones and synthetic hormone analogues. At low concentrations, PGRs have the ability to influence cell division, cell expansion, and cell structure and function, in addition to mediating environmental stress. In this study, experiments were conducted to determine how exogenous PGRs indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA) influenced osmotic regulatory substances and activity of antioxidant enzymes in Nitraria tangutorum. Using a completely randomized design, IAA, ABA, and GA3 were applied as foliar spray at concentrations of 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L to N. tangutorum shrubs. Some selected shrubs did not receive any treatment and served as the control (Ck). The results showed that the foliar spray of IAA, ABA, and GA3 significantly increased the content of osmotic regulatory substances (soluble sugar, soluble protein, and proline) and antioxidant enzymes (SOD and POD) at most concentrations. In addition, the malondialdehyde (MDA) content significantly reduced after treatment, but after regrowth of coppiced shrubs, lipid peroxidation increased and was still lower than Ck. Our study provides evidence that 100 mg/L 150 mg/L, and 200 mg/L concentrations of IAA, ABA, and GA3 treatments are effective for enhancing osmotic regulatory substances and the activity of antioxidant enzymes in N. tangutorum, which offers an effective strategy not only for increasing tolerance to abiotic and biotic stresses, but also improving the adaptability of N. tangutorum shrubs to the environment.

4.
PeerJ ; 10: e12989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35261820

RESUMEN

Background: The KT/HAK/KUP (KUP) transporters play important roles in potassium (K+) uptake and translocation, regulation of osmotic potential, salt tolerance, root morphogenesis and plant development. However, the KUP family has not been systematically studied in the typical halophyte Salicornia europaea L., and the specific expression patterns of SeKUPs under NaCl condition and K+ deficiency are unknown. Methods: In this study, SeKUPs were screened from PacBio transcriptome data of Salicornia europaea L. using bioinformatics. The identification, phylogenetic analysis and prediction of conserved motifs of SeKUPs were extensively explored. Moreover, the expression levels of 24 selected SeKUPs were assayed by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In this study, a total of 24 putative SeKUPs were identified in S. europaea. Nineteen SeKUPs with the fixed domain EA[ML]FADL were used to construct the phylogenetic tree, and they were divided into four clusters (clusters I-IV). MEME analysis identified 10 motifs in S. europaea, and the motif analysis suggested that 19 of the identified SeKUPs had at least four K+ transporter motifs existed in all SeKUPs (with the exception of SeKUP-2). The RT-qPCR analysis showed that the expression levels of most SeKUPs were significantly up-regulated in S. europaea when they were exposed to K+ deficiency and high salinity, implying that these SeKUPs may play a key role in the absorption and transport of K+ and Na+ in S. europaea. Discussions: Our results laid the foundation for revealing the salt tolerance mechanism of SeKUPs, and provided key candidate genes for further studies on the function of KUP family in S. europaea.


Asunto(s)
Chenopodiaceae , Transcriptoma , Transcriptoma/genética , Proteínas de Plantas/genética , Cloruro de Sodio , Filogenia , Chenopodiaceae/genética
5.
Front Plant Sci ; 13: 1097076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743536

RESUMEN

Salicornia europaea is one of the world's salt-tolerant plant species and is recognized as a model plant for studying the metabolism and molecular mechanisms of halophytes under salinity. To investigate the metabolic responses to salinity stress in S. europaea, this study performed a widely targeted metabolomic analysis after analyzing the physiological characteristics of plants exposed to various NaCl treatments. S. europaea exhibited excellent salt tolerance and could withstand extremely high NaCl concentrations, while lower NaCl conditions (50 and 100 mM) significantly promoted growth by increasing tissue succulence and maintaining a relatively stable K+ concentration. A total of 552 metabolites were detected, 500 of which were differently accumulated, mainly consisting of lipids, organic acids, saccharides, alcohols, amino acids, flavonoids, phenolic acids, and alkaloids. Sucrose, glucose, p-proline, quercetin and its derivatives, and kaempferol derivatives represented core metabolites that are responsive to salinity stress. Glycolysis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were considered as the most important pathways responsible for salt stress response by increasing the osmotic tolerance and antioxidant activities. The high accumulation of some saccharides, flavonoids, and phenolic acids under 50 mM NaCl compared with 300 mM NaCl might contribute to the improved salt tolerance under the 50 mM NaCl treatment. Furthermore, quercetin, quercetin derivatives, and kaempferol derivatives showed varied change patterns in the roots and shoots, while coumaric, caffeic, and ferulic acids increased significantly in the roots, implying that the coping strategies in the shoots and roots varied under salinity stress. These findings lay the foundation for further analysis of the mechanism underlying the response of S. europaea to salinity.

6.
BMC Plant Biol ; 21(1): 491, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696719

RESUMEN

BACKGROUND: Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. CONCLUSION: The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.


Asunto(s)
Adaptación Fisiológica/genética , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , China , Deshidratación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Salinidad , Transcriptoma
7.
PeerJ ; 8: e10207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194409

RESUMEN

BACKGROUND: The WRKY gene family, one of the major transcription factor families in plants, plays crucial regulatory roles in physiological and biological developmental processes, and the adaptation of plants to the environment. However, the systematic study of WRKY structure, expression profiling, and regulatory functions has not been extensively reported in Lycium ruthenicum, although these aspects have been comprehensively studied in most plant species. METHODS: In this study, the WRKY genes were identified from a L. ruthenicum transcriptome database by using bioinformatics. The identification, phylogenetic analysis, zinc-finger structures, and conserved motif prediction were extensively explored. Moreover, the expression levels of 23 selected genes with fragments per kilobase of exons per million mapped reads (FPKM) >5 were assayed during different fruit developmental stages with real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: A total of 73 putative WRKY proteins in the L. ruthenicum transcriptome database were identified and examined. Forty-four proteins with the WRKY domain were identified and divided into three major groups with several subgroups, in accordance with those in other plant species. All 44 LrWRKY proteins contained one or two conserved WRKY domains and a zinc-finger structure. Conserved motif prediction revealed conservation of the WRKY DNA-binding domain in L. ruthenicum proteins. The selected LrWRKY genes exhibited discrete expression patterns during different fruit developmental stages. Interestingly, five LrWRKYs (-20, -21, -28, -30, and -31) were expressed remarkably throughout the fruit developmental stages. DISCUSSION: Our results reveal the characteristics of the LrWRKY gene family, thus laying a foundation for further functional analysis of the WRKY family in L. ruthenicum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA