Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 122-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448590

RESUMEN

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Asunto(s)
Caenorhabditis , Impresión Genómica , ARN de Interacción con Piwi , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Femenino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamientos Genéticos , Padre , Genoma/genética , Impresión Genómica/genética , Organismos Hermafroditas/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Madres , Oocitos/metabolismo , ARN de Interacción con Piwi/genética , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos/genética , ARN Mensajero/genética , Toxinas Biológicas/genética , Transcripción Genética
2.
Sci Rep ; 11(1): 5720, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707514

RESUMEN

Sympatric coexistence of recently diverged species raises the question of barriers restricting the gene flow between them. Reproductive isolation may be implemented at several levels, and the weakening of some, e.g. premating, barriers may require the strengthening of the others, e.g. postcopulatory ones. We analysed mating patterns and shell size of mates in recently diverged closely related species of the subgenus Littorina Neritrema (Littorinidae, Caenogastropoda) in order to assess the role of premating reproductive barriers between them. We compared mating frequencies observed in the wild with those expected based on relative densities using partial canonical correspondence analysis. We introduced the fidelity index (FI) to estimate the relative accuracy of mating with conspecific females and precopulatory isolation index (IPC) to characterize the strength of premating barriers. The species under study, with the exception of L. arcana, clearly demonstrated preferential mating with conspecifics. According to FI and IPC, L. fabalis and L. compressa appeared reliably isolated from their closest relatives within Neritrema. Individuals of these two species tend to be smaller than those of the others, highlighting the importance of shell size changes in gastropod species divergence. L. arcana males were often found in pairs with L. saxatilis females, and no interspecific size differences were revealed in this sibling species pair. We discuss the lack of discriminative mate choice in the sympatric populations of L. arcana and L. saxatilis, and possible additional mechanisms restricting gene flow between them.


Asunto(s)
Conducta Sexual Animal/fisiología , Caracoles/fisiología , Simpatría/fisiología , Exoesqueleto/anatomía & histología , Animales , Análisis por Conglomerados , Copulación/fisiología , Masculino , Tamaño de los Órganos , Aislamiento Reproductivo , Especificidad de la Especie
3.
PeerJ ; 8: e8546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095363

RESUMEN

BACKGROUND: The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS: Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS: Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...