Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109637, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646165

RESUMEN

Carcinoembryonic antigen (CEA) is a critical biomarker for identifying colon cancer. This work presents an electrochemical impedance spectroscopy (EIS) based aptasensor for detecting CEA, utilizing a single-stranded DNA (ssDNA) aptamer previously selected and characterized by our research group. The surface of an interdigitated gold electrode (IDE) was successfully functionalized with an 18-HEG-modified aptamer sequence. The developed aptasensor demonstrated high specificity and sensitivity with detection limits of 2.4 pg/mL and 3.8 pg/mL for CEA in buffer and human serum samples, respectively. The optimal incubation time for the target protein was 20 min, and EIS measurements took less than 3 min. Atomic force microscopy (AFM) micrographs supported the EIS data, demonstrating a change in IDE surface roughness after each modification step, confirming the successful capture of the target. The potential of this developed EIS aptasensor in detecting CEA in complex samples holds promise.

2.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38544254

RESUMEN

The accuracy and efficacy of medical treatment would be greatly improved by the continuous and real-time monitoring of protein biomarkers. Identification of cancer biomarkers in patients with solid malignant tumors is receiving increasing attention. Existing techniques for detecting cancer proteins, such as the enzyme-linked immunosorbent assay, require a lot of work, are not multiplexed, and only allow for single-time point observations. In order to get one step closer to clinical usage, a dynamic platform for biosensing the cancer biomarker CD44 using a single-mode optical fiber-based ball resonator biosensor was designed, constructed and evaluated in this work. The main novelty of the work is an in-depth study of the capability of an in-house fabricated optical fiber biosensor for in situ detection of a cancer biomarker (CD44 protein) by conducting several types of experiments. The main results of the work are as follows: (1) Calibration of the fabricated fiber-optic ball resonator sensors in both static and dynamic conditions showed similar sensitivity to the refractive index change demonstrating its usefulness as a biosensing platform for dynamic measurements; (2) The fabricated sensors were shown to be insensitive to pressure changes further confirming their utility as an in situ sensor; (3) The sensor's packaging and placement were optimized to create a better environment for the fabricated ball resonator's performance in blood-mimicking environment; (4) Incubating increasing protein concentrations with antibody-functionalized sensor resulted in nearly instantaneous signal change indicating a femtomolar detection limit in a dynamic range from 7.1 aM to 16.7 nM; (5) The consistency of the obtained signal change was confirmed by repeatability studies; (6) Specificity experiments conducted under dynamic conditions demonstrated that the biosensors are highly selective to the targeted protein; (7) Surface morphology studies by AFM measurements further confirm the biosensor's exceptional sensitivity by revealing a considerable shift in height but no change in surface roughness after detection. The biosensor's ability to analyze clinically relevant proteins in real time with high sensitivity offers an advancement in the detection and monitoring of malignant tumors, hence improving patient diagnosis and health status surveillance.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Tecnología de Fibra Óptica/métodos , Fibras Ópticas , Proteínas , Neoplasias/diagnóstico , Receptores de Hialuranos
3.
Biomed Opt Express ; 15(1): 185-198, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223184

RESUMEN

Detection of biomarkers for tracking disease progression is becoming increasingly important in biomedicine. Using saliva as a diagnostic sample appears to be a safe, cost-effective, and non-invasive approach. Salivary interleukin-8 levels demonstrate specific changes associated with diseases such as obstructive pulmonary disease, squamous cell carcinoma, oral cancer, and breast cancer. Traditional protein detection methods, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and Western blot are often expensive, complex, and time-consuming. In this study, an optical fiber-based biosensor was developed to detect salivary IL-8 protein in a label-free manner. The biosensor was able to achieve an ultra-low limit detection of 0.91 fM. Moreover, the tested concentration range was wide: from 273 aM to 59 fM. As a proof-of-concept for detecting the protein in real clinical samples, the detection was carried out in artificial saliva. It was possible to achieve high sensitivity for the target protein and minimal signal alterations for the control proteins.

4.
Sci Rep ; 12(1): 14296, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995784

RESUMEN

Honghua (Carthami flos) and Xihonghua (Croci stigma) have been used in anti-COVID-19 as Traditional Chinese Medicine, but the mechanism is unclear. In this study, we applied network pharmacology by analysis of active compounds and compound-targets networks, enzyme kinetics assay, signaling pathway analysis and investigated the potential mechanisms of anti-COVID-19. We found that both herbs act on signaling including kinases, response to inflammation and virus. Moreover, crocin likely has an antiviral effect due to its high affinity towards the human ACE2 receptor by simulation. The extract of Honghua and Xihonghua exhibited nanozyme/herbzyme activity of alkaline phosphatase, with distinct fluorescence. Thus, our data suggest the great potential of Honghua in the development of anti-COVID-19 agents.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Carthamus tinctorius , Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/farmacología , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...