Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177020

RESUMEN

We have demonstrated the high-density formation of super-atom-like Si quantum dots with Ge-core on ultrathin SiO2 with control of high-selective chemical-vapor deposition and applied them to an active layer of light-emitting diodes (LEDs). Through luminescence measurements, we have reported characteristics carrier confinement and recombination properties in the Ge-core, reflecting the type II energy band discontinuity between the Si-clad and Ge-core. Additionally, under forward bias conditions over a threshold bias for LEDs, electroluminescence becomes observable at room temperature in the near-infrared region and is attributed to radiative recombination between quantized states in the Ge-core with a deep potential well for holes caused by electron/hole simultaneous injection from the gate and substrate, respectively. The results will lead to the development of Si-based light-emitting devices that are highly compatible with Si-ultra-large-scale integration processing, which has been believed to have extreme difficulty in realizing silicon photonics.

2.
Nanotechnology ; 28(48): 485303, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985186

RESUMEN

Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.

3.
Opt Express ; 22(5): 5029-36, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663841

RESUMEN

Phase regeneration of differential phase-shift keying (DPSK) signals is demonstrated using a silicon waveguide as nonlinear medium for the first time. A p-i-n junction across the waveguide enables decreasing the nonlinear losses introduced by free-carrier absorption (FCA), thus allowing phase-sensitive extinction ratios as high as 20 dB to be reached under continuous-wave (CW) pumping operation. Furthermore the regeneration properties are investigated under dynamic operation for a 10-Gb/s DPSK signal degraded by phase noise, showing receiver sensitivity improvements above 14 dB. Different phase noise frequencies and amplitudes are examined, resulting in an improvement of the performance of the regenerated signal in all the considered cases.

4.
Opt Express ; 21(13): 16210-21, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23842406

RESUMEN

In this article a new method is presented that allows for low loss implementation of fast carrier transport structures in diffraction limited photonic crystal resonators. We utilize a 'node-matched doping' process in which precise silicon doping results in comb-like shaped, highly-doped diode areas that are matched to the spatial field distribution of the optical modes of a Fabry-Pérot resonator. While the doping is only applied to areas with low optical field strength, the intrinsic diode region overlaps with an optical field maximum. The presented node-matched diode-modulators, combining small size, high-speed, thermal stability and energy-efficient switching could become the centerpiece for monolithically integrated transceivers.

5.
Opt Express ; 20(12): 13100-7, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22714337

RESUMEN

In this paper we present four-wave mixing (FWM) based parametric conversion experiments in p-i-n diode assisted silicon-on-insulator (SOI) nano-rib waveguides using continuous-wave (CW) light around 1550 nm wavelength. Using a reverse biased p-i-n waveguide diode we observe an increase of the wavelength conversion efficiency of more than 4.5 dB compared to low loss nano-rib waveguides without p-i-n junction, achieving a peak efficiency of -1 dB. Conversion efficiency improves also by more than 7 dB compared to previously reported experiments deploying 1.5 µm SOI waveguides with p-i-n structure. To the best of our knowledge, the observed peak conversion efficiency of -1dB is the highest CW efficiency in SOI reported so far.

6.
Opt Express ; 20(10): 11241-6, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565746

RESUMEN

The realization of an integrated delay line using tapered Bragg gratings in a drop-filter configuration is presented. The device is fabricated on silicon-on-insulator (SOI) rib waveguides using a Deep-UV 248 nm lithography. The continuous delay tunability is achieved using the thermo-optical effect, showing experimentally that a tuning range of 450 ps can be obtained with a tuning coefficient of -51 ps/°C. Furthermore the system performance is considered, showing that an operation at a bit rate of 25 Gbit/s can be achieved, and could be extended to 80 Gbit/s with the addition of a proper dispersion compensation.


Asunto(s)
Óptica y Fotónica , Cristalización , Diseño de Equipo , Filtración , Fotones , Procesamiento de Señales Asistido por Computador , Silicio/química , Temperatura , Tomografía de Coherencia Óptica/métodos , Rayos Ultravioleta
7.
J Nanosci Nanotechnol ; 11(9): 8348-53, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22097582

RESUMEN

One of the main requirements for Si-based ultrasmall device is atomic-order control of process technology. Here, we show the concept of atomically controlled processing for group IV semiconductors based on atomic-order surface reaction control in Si-based CVD epitaxial growth. Self-limiting formation of 1-3 atomic layers of group IV or related atoms after thermal adsorption and reaction of hydride gases on Si(1-x)Gex(100) (x = 0-1) surface are generalized based on the Langmuir-type model. Moreover, Si-based epitaxial growth on N, P or C atomic layer formed on Si(1-x)Gex(100) surface is achieved at temperatures below 500 degrees C. N atoms of about 4 x 10(14) cm(-2) are buried in the Si epitaxial layer within about 1 nm thick region. In the Si(0.5)Ge(0.5) epitaxial layer, N atoms of about 6 x 10(14) cm(-2) are confined within about 1.5 nm thick region. The confined N atoms in Si(1-x)Gex preferentially form Si-N bonds. For unstrained Si cap layer grown on top of the P atomic layer formed on Si(1-x)Gex(100) with P atomic amount of below about 4 x 10(14) cm(-2) using Si2H6 instead of SiH4, the incorporated P atoms are almost confined within 1 nm around the heterointerface. It is found that tensile-strain in the Si cap layer growth enhances P surface segregation and reduces the incorporated P atomic amount around the heterointerface. Heavy C atomic-layer doping suppresses strain relaxation as well as intermixing between Si and Ge at the nm-order thick Si(1-x)Gex/Si heterointerface. These results open the way to atomically controlled technology for ULSIs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...