Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 18(11): 4625-36, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17855510

RESUMEN

Drosophila myosin IB (Myo1B) is one of two class I myosins in the Drosophila genome. In the larval and adult midgut enterocyte, Myo1B is present within the microvillus (MV) of the apical brush border (BB) where it forms lateral tethers between the MV membrane and underlying actin filament core. Expression of green fluorescent protein-Myo1B tail domain in the larval gut showed that the tail domain is sufficient for localization of Myo1B to the BB. A Myo1B deletion mutation exhibited normal larval gut physiology with respect to food uptake, clearance, and pH regulation. However, there is a threefold increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive enterocyte nuclei in the Myo1B mutant. Ultrastructural analysis of mutant midgut revealed many perturbations in the BB, including membrane tethering defects, MV vesiculation, and membrane shedding. The apical localization of both singed (fascin) and Dmoesin is impaired. BBs isolated from mutant and control midgut revealed that the loss of Myo1B causes the BB membrane and underlying cytoskeleton to become destabilized. Myo1B mutant larvae also exhibit enhanced sensitivity to oral infection by the bacterial pathogen Pseudomonas entomophila, and severe cytoskeletal defects are observed in the BB of proximal midgut epithelial cells soon after infection. Resistance to P. entomophila infection is restored in Myo1B mutant larvae expressing a Myo1B transgene. These results indicate that Myo1B may play a role in the local midgut response pathway of the Imd innate immune response to Gram-negative bacterial infection.


Asunto(s)
Drosophila melanogaster/metabolismo , Enterocitos/metabolismo , Miosina Tipo I/metabolismo , Pseudomonas/patogenicidad , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Epitelio/metabolismo , Tracto Gastrointestinal , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Microscopía Electrónica de Transmisión , Mutación/genética , Miosina Tipo I/genética , Miosina Tipo I/ultraestructura , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/patología , Sensibilidad y Especificidad , Tasa de Supervivencia
2.
Proc Natl Acad Sci U S A ; 102(52): 18785-92, 2005 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-16357198

RESUMEN

This, our Inaugural Article as Academy Members, is ironically our swan song from the field of the actin cytoskeleton. By reviewing what we have learned and what we think is going on during development, we hope to lure you, the reader, into applying your skills to the bristle cell. The processes of the assembly and disassembly of actin bundles is laid out in time and space in an organism that lends itself to genetic manipulation. The cell provides every process you could want: filament nucleation, growth of microvilli, joining of microvillar bundles into modules, assembly of modules into bundles, time-dependent use of at least two crossbridging proteins, filament turnover, treadmilling, disassembly, and filament translocation.


Asunto(s)
Actinas/química , Citoesqueleto de Actina/química , Animales , Proteínas del Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Drosophila , Proteínas de Microfilamentos/química , Microscopía Fluorescente , Unión Proteica , Investigación , Factores de Tiempo
3.
J Exp Zool A Comp Exp Biol ; 303(11): 927-45, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16217807

RESUMEN

Trichuris muris is a large metazoan pathogen that has been proposed to live intracellularly within living host intestinal epithelial cells. We sought to determine how Trichuris bores its way through the mucosal epithelium and to elucidate the parasite strategies for taking advantage of this intracellular niche. Since the apical surface of the mucosal epithelium is stabilized by the actin cytoskeleton and cell junctions, it remains intact over the worm following its entry into cells. In contrast, non-stabilized lateral membranes of the host epithelial cells are ruptured and cells are killed to form an inert syncytial tunnel. The ventral surface of the nematode worm is studded by pores that overlie bacillary cells; these pores penetrate through the cuticle and are in direct contact with host cytoplasm. From scanning electron micrographs of isolated worms, we calculate that each adult contains approximately 50,000 bacillary cells. The apical surface of the bacillary cells is extensively folded into plicae 40 nm in diameter, thereby increasing the surface area many-fold. Bacillary cells lack organelles for enzyme synthesis and secretion and fail to export protons. However, by confocal light microscopy it was observed that fluorescent macromolecules in excess of 100,000 Da can penetrate into the pores. Taken together, we conclude that the bacillary cells are essential for living inside host epithelium and function predominantly in absorption of soluble molecules from the host mucosal cytoplasm, in essence behaving as an external gut epithelium that is protected from abrasion by the cuticle that surrounds the openings of the bacillary cells.


Asunto(s)
Adaptación Fisiológica/fisiología , Mucosa Intestinal/parasitología , Ratones/parasitología , Trichuris/citología , Trichuris/ultraestructura , Animales , Colorantes Fluorescentes , Interacciones Huésped-Parásitos , Ratones Endogámicos BALB C , Microscopía Confocal , Microscopía Electrónica , Organismos Libres de Patógenos Específicos , Trichuris/fisiología
4.
Mol Biol Cell ; 16(8): 3620-31, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15917291

RESUMEN

Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (approximately 1 microm/h) over the course of approximately 18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn--elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton forms from microvilli-like pimples that project actin filaments into the cytoplasm. These filaments become cross-linked into bundles by the sequential use of three cross-bridges: villin, forked and fascin. Genetic loss of each cross-bridge affects cell shape. Filament bundles associate together, with no lateral membrane attachments, into a cone of overlapping bundles that matures into an oval base by the asymmetric addition of bundles on the distal side. In contrast, the long bristle cell extension is supported by equally long (up to 400 microm) filament bundles assembled together by end-to-end grafting of shorter modules. Thus, bristle and hair cells use microvilli and cross-bridges to generate the common raw material of actin filament bundles but employ different strategies to assemble these into vastly different shapes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Cabello/citología , Alas de Animales/citología , Envejecimiento/fisiología , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/ultraestructura , Cabello/crecimiento & desarrollo , Cabello/metabolismo , Cabello/ultraestructura , Cinética , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Pupa/ultraestructura , Factores de Tiempo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Alas de Animales/ultraestructura
5.
Mol Biol Cell ; 15(12): 5481-91, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15371540

RESUMEN

Drosophila bristles display a precise orientation and curvature. An asymmetric extension of the socket cell overlies the newly emerging bristle rudiment to provide direction for bristle elongation, a process thought to be orchestrated by the nerve dendrite lying between these cells. Scanning electron microscopic analysis of individual bristles showed that curvature is planar and far greater near the bristle base. Correlated with this, as development proceeds the pupa gradually recedes from the inner pupal case (an extracellular layer that encloses the pupa) leading to less bristle curvature along the shaft. We propose that the inner pupal case induces elongating bristles to bend when they contact this barrier. During elongation the actin cytoskeleton locks in this curvature by grafting together the overlapping modules that comprise the long filament bundles. Because the bristle is curved, the actin bundles on the superior side must be longer than those on the inferior side. This is accomplished during grafting by greater elongation of superior side modules. Poor actin cross-bridging in mutant bristles results in altered curvature. Thus, the pattern of bristle curvature is a product of both extrinsic factors-the socket cell and the inner pupal case--and intrinsic factors--actin cytoskeleton assembly.


Asunto(s)
Actinas/metabolismo , Estructuras Animales/anatomía & histología , Estructuras Animales/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Actinas/química , Actinas/ultraestructura , Estructuras Animales/citología , Estructuras Animales/inervación , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Biológicos , Mutación/genética
6.
J Cell Sci ; 117(Pt 16): 3531-8, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15226373

RESUMEN

During bristle development the emerging bristle shaft, socket cell, and the apical surface of thoracic epithelial cells form tiny protuberances or pimples that contain electron-dense material located on the cytoplasmic surface of the pimple tip. In a few cases short actin filaments extend from this material into the cortical cytoplasm. When cultured in the presence of jasplakinolide, an agent that prevents filament disassembly, pimples elongate to form microvilli containing a core of crosslinked filaments. Emerging-bristle mutants delay cortical bundle formation and are aggregated by forked protein crossbridges. Using these mutants and enhancing core bundle formation with jasplakinolide we found that microvillar formation represents the first stage in the morphogenesis of much larger actin bundles in Drosophila bristle shaft cells. Evidence is presented showing that socket cells do not contain forked protein crossbridges, a fact that may explain why cortical bundles only appear in bristle shaft cells. Furthermore, as pimples and microvilli form in the absence of both forked and fascin crossbridges, we also conclude that neither of these crossbridges account for core bundle formation in microvilli, but there must exist a third, as yet unidentified crossbridge in this system. Immunocytochemisty suggested that this new crossbridge is not Drosophila villin. Finally, ultrastructural comparisons suggest that microspikes and microvilli form very differently.


Asunto(s)
Actinas/biosíntesis , Actinas/metabolismo , Animales , Drosophila melanogaster/crecimiento & desarrollo , Microscopía Confocal , Microscopía Electrónica
7.
Mol Biol Cell ; 14(10): 3953-66, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14517310

RESUMEN

Drosophila bristle cells are shaped during growth by longitudinal bundles of cross-linked actin filaments attached to the plasma membrane. We used confocal and electron microscopy to examine actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filaments and small internal bundles also form in the shaft cytoplasm only to disappear within 4 min. Thus, formation and later removal of actin filaments are prominent features of growing bristles. These transient snarls and internal bundles can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibitor of actin filament depolymerization, resulting in enormous numbers of internal bundles and uncross-linked filaments. Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cross-bridging adjacent actin filaments together inhibits depolymerization. Thus, highly cross-bridged and membrane-bound actin filaments turn over slowly and persist, whereas poorly cross-linked filaments turnover more rapidly. We argue that the selection of stable bundles relative to poorly cross-bridged filaments can account for the size, shape, number, and location of the longitudinal actin bundles in bristles. As a result, filament turnover plays an important role in regulating cytoskeleton assembly and consequently cell shape.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Depsipéptidos , Drosophila melanogaster/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Membrana Celular , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Drosophila melanogaster/embriología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Péptidos Cíclicos/farmacología
8.
J Cell Biol ; 162(6): 1069-77, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12975350

RESUMEN

The actin bundles essential for Drosophila bristle elongation are hundreds of microns long and composed of cross-linked unipolar filaments. These long bundles are built from much shorter modules that graft together. Using both confocal and electron microscopy, we demonstrate that newly synthesized modules are short (1-2 microm in length); modules elongate to approximately 3 microm by growing over the surface of longitudinally adjacent modules to form a graft; the grafted regions are initially secured by the forked protein cross-bridge and later by the fascin cross-bridge; actin bundles are smoothed by filament addition and appear continuous and without swellings; and in the absence of grafting, dramatic alterations in cell shape occur that substitutes cell width expansion for elongation. Thus, bundle morphogenesis has several components: module formation, elongation, grafting, and bundle smoothing. These actin bundles are much like a rope or cable, made by overlapping elements that run a small fraction of the overall length, and stiffened by cross-linking.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Mecanorreceptores/crecimiento & desarrollo , Citoesqueleto de Actina/ultraestructura , Animales , Tipificación del Cuerpo/fisiología , Proteínas Portadoras/genética , Diferenciación Celular/fisiología , Células Cultivadas , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Mecanorreceptores/metabolismo , Mecanorreceptores/ultraestructura , Metamorfosis Biológica/fisiología , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Microscopía Confocal , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Pupa/ultraestructura
9.
J Cell Biol ; 158(3): 415-9, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12147677

RESUMEN

Phagosomes containing the bacterial pathogen Legionella pneumophila are transported to the ER after macrophage internalization. To modulate phagosome transport, Legionella use a specialized secretion system that injects bacterial proteins into eukaryotic cells. This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in transporting Legionella to the ER.


Asunto(s)
Proteínas Bacterianas/metabolismo , Retículo Endoplásmico Rugoso/microbiología , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Macrófagos/microbiología , Fagosomas/microbiología , Transporte de Proteínas/inmunología , Animales , Proteínas Bacterianas/inmunología , Retículo Endoplásmico Rugoso/metabolismo , Retículo Endoplásmico Rugoso/ultraestructura , Humanos , Legionella pneumophila/inmunología , Legionella pneumophila/ultraestructura , Enfermedad de los Legionarios/patología , Enfermedad de los Legionarios/fisiopatología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Fagocitosis/inmunología , Fagosomas/metabolismo , Fagosomas/ultraestructura , Vacuolas/metabolismo , Vacuolas/microbiología , Vacuolas/ultraestructura
10.
Microbes Infect ; 4(2): 119-32, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11880042

RESUMEN

A number of cysteine and serine protease inhibitors blocked the intracellular growth and replication of Toxoplasma gondii tachyzoites. Most of these inhibitors caused only minor alterations to parasite morphology irrespective of the effects on the host cells. However, three, cathepsin inhibitor III, TPCK and subtilisin inhibitor III, caused extensive swelling of the secretory pathway of the parasite (i.e. the ER, nuclear envelope, and Golgi complex), caused the breakdown of the parasite surface membrane, and disrupted rhoptry formation. The disruption of the secretory pathway is consistent with the post-translational processing of secretory proteins in Toxoplasma, and with the role of proteases in the maturation/activation of secreted proteins in general. Interestingly, while all parasites in an individual vacuole (the clonal progeny of a single invading parasite) were similarly affected, parasites in different vacuoles in the same host cell showed different responses to these inhibitors. Such observations imply that there are major differences in the biochemistry/physiology between tachyzoites within different vacuoles and argue that adverse effects on the host cell are not always responsible for changes in the parasite. Treatment of established parasites also leads to an accumulation of abnormal materials in the parasitophorous vacuole implying that materials deposited into the vacuole normally undergo proteolytic modification or degradation. Despite the often extensive morphological changes, nothing resembling lysosomal bodies was seen in any treated parasites, consistent with previous observations showing that mother cell organelles are not recycled by any form of autophagic-lysosomal degradation, although the question of how the parasite recycles these organelles remains unanswered.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Serina Proteinasa/farmacología , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Animales , Coccidiostáticos/farmacología , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/ultraestructura , Serina Endopeptidasas/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestructura
11.
J Cell Sci ; 115(Pt 3): 641-53, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11861770

RESUMEN

Drosophila bristle cells form enormous extensions that are supported by equally impressive scaffolds of modular, polarized and crosslinked actin filament bundles. As the cell matures and support is taken over by the secreted cuticle, the actin scaffold is completely removed. This removal begins during cell elongation and proceeds via an orderly series of steps that operate on each module. Using confocal and electron microscopy, we found that the approximately 500-filament modules are fractured longitudinally into 25-50-filament subbundles, indicating that module breakdown is the reverse of assembly. Time-lapse confocal analysis of GFP-decorated bundles in live cells showed that modules were shortened by subunit removal from filament barbed ends, again indicating that module breakdown is the reverse of assembly. Module shortening takes place at a fairly slow rate of approximately 1microm/hour, implying that maximally crosslinked modules are not rapidly depolymerized. Barbed-end depolymerization was prevented with jasplakinolide and accelerated with cycloheximide, indicating that barbed-end maintenance requires continuous protein synthesis. Subbundle adhesion was lost in the presence of cytochalasin, indicating that continuous actin polymerization is required. Thus, these polarized actin filament bundles are dynamic structures that require continuous maintenance owing to protein and actin filament turnover. We propose that after cell elongation, maintenance falls behind turnover, resulting in the removal of this modular cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Depsipéptidos , Drosophila melanogaster/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Extensiones de la Superficie Celular/ultraestructura , Cicloheximida/farmacología , Citocalasina D/farmacología , Drosophila melanogaster/citología , Insecticidas/farmacología , Microscopía Confocal , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Péptidos Cíclicos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Pupa/citología , Pupa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...