Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 84: 101938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631478

RESUMEN

OBJECTIVE: The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid ß-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS: We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS: Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS: Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.


Asunto(s)
Receptor Relacionado con Estrógeno ERRalfa , PPAR alfa , Receptores de Estrógenos , PPAR alfa/metabolismo , PPAR alfa/genética , Animales , Ratones , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Humanos , Regulación de la Expresión Génica , Células HEK293 , Masculino , Ratones Endogámicos C57BL , Unión Proteica , Hígado/metabolismo
2.
Front Immunol ; 14: 1124011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006237

RESUMEN

Introduction: Polymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known. Methods & results: We investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function. Conclusion: We conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.


Asunto(s)
PPAR alfa , Sepsis , Ratones , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Hepatocitos/metabolismo , Sepsis/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Glucosa/metabolismo , Luciferasas , Ratones Noqueados
3.
Nucleic Acids Res ; 51(4): 1652-1661, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36762471

RESUMEN

The Mousepost 1.0 online search tool, launched in 2017, allowed to search for variations in all protein-coding gene sequences of 36 sequenced mouse inbred strains, compared to the reference strain C57BL/6J, which could be linked to strain-specific phenotypes and modifier effects. Because recently these genome sequences have been significantly updated and sequences of 16 extra strains added by the Mouse Genomes Project, a profound update, correction and expansion of the Mousepost 1.0 database has been performed and is reported here. Moreover, we have added a new class of protein disturbing sequence polymorphisms (besides stop codon losses, stop codon gains, small insertions and deletions, and missense mutations), namely start codon mutations. The current version, Mousepost 2.0 (https://mousepost.be), therefore is a significantly updated and invaluable tool available to the community and is described here and foreseen by multiple examples.


Asunto(s)
Genoma , Ratones , Programas Informáticos , Animales , Ratones/genética , Codón sin Sentido , Codón de Terminación , Ratones Endogámicos C57BL , Ratones Endogámicos , Mutación
4.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552845

RESUMEN

Despite decades of research, sepsis remains one of the most urgent unmet medical needs. Mechanistic investigations into sepsis have mainly focused on targeting inflammatory pathways; however, recent data indicate that sepsis should also be seen as a metabolic disease. Targeting metabolic dysregulations that take place in sepsis might uncover novel therapeutic opportunities. The role of peroxisome proliferator-activated receptor alpha (PPARɑ) in liver dysfunction during sepsis has recently been described, and restoring PPARɑ signaling has proven to be successful in mouse polymicrobial sepsis. To confirm that such therapy might be translated to septic patients, we analyzed metabolic perturbations in the liver of a porcine fecal peritonitis model. Resuscitation with fluids, vasopressor, antimicrobial therapy and abdominal lavage were applied to the pigs in order to mimic human clinical care. By using RNA-seq, we detected downregulated PPARɑ signaling in the livers of septic pigs and that reduced PPARɑ levels correlated well with disease severity. As PPARɑ regulates the expression of many genes involved in fatty acid oxidation, the reduced expression of these target genes, concomitant with increased free fatty acids in plasma and ectopic lipid deposition in the liver, was observed. The results obtained with pigs are in agreement with earlier observations seen in mice and support the potential of targeting defective PPARɑ signaling in clinical research.


Asunto(s)
Hepatopatías , Sepsis , Choque Séptico , Humanos , Animales , Ratones , Porcinos , PPAR alfa/metabolismo , Sepsis/genética
5.
Cells ; 11(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203332

RESUMEN

The glucocorticoid receptor (GR) is a very versatile protein that comes in several forms, interacts with many proteins and has multiple functions. Numerous therapies are based on GRs' actions but the occurrence of side effects and reduced responses to glucocorticoids have motivated scientists to study GRs in great detail. The notion that GRs can perform functions as a monomeric protein, but also as a homodimer has raised questions about the underlying mechanisms, structural aspects of dimerization, influencing factors and biological functions. In this review paper, we are providing an overview of the current knowledge and insights about this important aspect of GR biology.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Dimerización , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo
6.
J Biol Chem ; 298(2): 101574, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007536

RESUMEN

The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.


Asunto(s)
Dexametasona , Mutación Puntual , Receptores de Glucocorticoides , Animales , Dexametasona/farmacología , Glucocorticoides/farmacología , Ligandos , Ratones , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
EMBO Rep ; 23(1): e53083, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699114

RESUMEN

Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
8.
Mamm Genome ; 33(1): 81-87, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34313794

RESUMEN

Mice and rats are the most commonly used vertebrate model organisms in biomedical research. The availability of a reference genome in both animals combined with the deep sequencing of several doze of popular inbred lines also provides rich sequence variation data in these species. In some cases, such sequence variants can be linked directly to a distinctive phenotype. In previous work, we created the mouse and rat online searchable databases ("Mousepost" and "Ratpost") where small variant information for protein coding transcripts in mouse and rat inbred strains can be easily retrieved at the amino acid level. These tools are directly useful in forward genetics strategies or as a repository of existing sequence variations. Here, we perform a comparison between the "Mousepost" and "Ratpost" databases and we couple these two tools to a database of human sequence variants ClinVar. We investigated the level of redundancy and complementarity of known variants in protein coding transcripts and found that the large majority of variants is species-specific. However, a small set of positions is conserved in an inbred line between both species. We conclude that both databases are highly complementary, but this may change with further sequencing efforts in both species.


Asunto(s)
Proteínas , Animales , Secuencia de Bases , Ratones , Fenotipo , Proteínas/genética , Ratas , Ratas Endogámicas , Especificidad de la Especie
9.
iScience ; 24(7): 102790, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34337361

RESUMEN

The hypothalamic-pituitary-adrenal (HPA) axis forms a complex neuroendocrine system that regulates the body's response to stress such as starvation. In contrast with the glucocorticoid receptor (GR), Zinc finger and BTB domain containing 32 (ZBTB32) is a transcription factor with poorly described functional relevance in physiology. This study shows that ZBTB32 is essential for the production of glucocorticoids (GCs) in response to starvation, since ZBTB32-/- mice fail to increase their GC production in the absence of nutrients. In terms of mechanism, GR-mediated upregulation of adrenal Scarb1 gene expression was absent in ZBTB32-/- mice, implicating defective cholesterol import as the cause of the poor GC synthesis. These lower GC levels are further associated with aberrations in the metabolic adaptation to starvation, which could explain the progressive weight gain of ZBTB32-/- mice. In conclusion, ZBTB32 performs a crosstalk with the GR in the metabolic adaptation to starvation via regulation of adrenal GC production.

10.
Cell Metab ; 33(9): 1763-1776.e5, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34302744

RESUMEN

Sepsis is a potentially lethal syndrome resulting from a maladaptive response to infection. Upon infection, glucocorticoids are produced as a part of the compensatory response to tolerate sepsis. This tolerance is, however, mitigated in sepsis due to a quickly induced glucocorticoid resistance at the level of the glucocorticoid receptor. Here, we show that defects in the glucocorticoid receptor signaling pathway aggravate sepsis pathophysiology by lowering lactate clearance and sensitizing mice to lactate-induced toxicity. The latter is exerted via an uncontrolled production of vascular endothelial growth factor, resulting in vascular leakage and collapse with severe hypotension, organ damage, and death, all being typical features of a lethal form of sepsis. In conclusion, sepsis leads to glucocorticoid receptor failure and hyperlactatemia, which collectively leads to a lethal vascular collapse.


Asunto(s)
Hiperlactatemia , Sepsis , Animales , Glucocorticoides , Ácido Láctico , Ratones , Receptores de Glucocorticoides/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Factor A de Crecimiento Endotelial Vascular
11.
Mamm Genome ; 32(1): 1-11, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33481094

RESUMEN

Rat-inbred strains are essential as scientific tools. We have analyzed the publicly available genome sequences of 40 rat-inbred strains and provide an overview of sequence variations leading to amino acid changes in protein-coding genes, premature STOP codons or loss of STOP codons, and short in-frame insertions and deletions of all protein-coding genes across all these inbred lines. We provide an overview of the predicted impact on protein function of all these affected proteins in the database, by comparing their sequence with the sequences of the rat reference strain BN/SsNHsdMcwi. We also investigate the flaws of the protein-coding sequences of this reference strain itself, by comparing them with a consensus genome. These data can be retrieved via a searchable website (Ratpost.be) and allow a global, better interpretation of genetic background effects and a source of naturally defective alleles in these 40 sequenced classical and high-priority rat-inbred strains.


Asunto(s)
Bases de Datos Genéticas , Proteínas/genética , Proteínas/metabolismo , Ratas Endogámicas/genética , Ratas Endogámicas/metabolismo , Animales , Codón , Genoma , Genómica/métodos , Sistemas de Lectura Abierta , Ratas
12.
EMBO Mol Med ; 12(10): e11917, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32914580

RESUMEN

The cytokine TNF drives inflammatory diseases, e.g., Crohn's disease. In a mouse model of TNF-induced systemic inflammatory response syndrome (SIRS), severe impact on intestinal epithelial cells (IECs) is observed. Zinc confers complete protection in this model. We found that zinc no longer protects in animals which lack glucocorticoids (GCs), or express mutant versions of their receptor GR in IECs, nor in mice which lack gut microbiota. RNA-seq studies in IECs showed that zinc caused reduction in expression of constitutive (STAT1-induced) interferon-stimulated response (ISRE) genes and interferon regulatory factor (IRF) genes. Since some of these genes are involved in TNF-induced cell death in intestinal crypt Paneth cells, and since zinc has direct effects on the composition of the gut microbiota (such as several Staphylococcus species) and on TNF-induced Paneth cell death, we postulate a new zinc-related anti-inflammatory mechanism. Zinc modulates the gut microbiota, causing less induction of ISRE/IRF genes in crypt cells, less TNF-induced necroptosis in Paneth cells, and less fatal evasion of gut bacteria into the system.


Asunto(s)
Interferones , Zinc , Animales , Muerte Celular , Mucosa Intestinal , Ratones , Células de Paneth
13.
EMBO Rep ; 21(7): e49762, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32383538

RESUMEN

Lipopolysaccharides (LPS) can lead to a lethal endotoxemia, which is a systemic inflammatory response syndrome (SIRS) characterized by a systemic release of cytokines, such as TNF. Endotoxemia is studied intensely, as a model system of Gram-negative infections. LPS- and TNF-induced SIRS involve a strong induction of interferon-stimulated genes (ISGs), some of which cause cell death in the intestinal epithelium cells (IECs). It is well known that glucocorticoids (GCs) protect against endotoxemia. By applying numerous mutant mouse lines, our data support a model whereby GCs, via their glucocorticoid receptor (GR), apply two key mechanisms to control endotoxemia, (i) at the level of suppression of TNF production in a GR monomer-dependent way in macrophages and (ii) at the level of inhibition of TNFR1-induced ISG gene expression and necroptotic cell death mediators in IECs in a GR dimer-dependent way. Our data add new important insights to the understanding of the role of TNF in endotoxemia and the two separate key roles of GCs in suppressing TNF production and activity.


Asunto(s)
Endotoxemia , Lipopolisacáridos , Animales , Citocinas , Endotoxemia/inducido químicamente , Endotoxemia/genética , Glucocorticoides , Inflamación/genética , Lipopolisacáridos/toxicidad , Ratones , Factor de Necrosis Tumoral alfa/genética
14.
EMBO Mol Med ; 12(2): e11319, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916705

RESUMEN

Despite intensive research and constant medical progress, sepsis remains one of the most urgent unmet medical needs of today. Most studies have been focused on the inflammatory component of the disease; however, recent advances support the notion that sepsis is accompanied by extensive metabolic perturbations. During times of limited caloric intake and high energy needs, the liver acts as the central metabolic hub in which PPARα is crucial to coordinate the breakdown of fatty acids. The role of hepatic PPARα in liver dysfunction during sepsis has hardly been explored. We demonstrate that sepsis leads to a starvation response that is hindered by the rapid decline of hepatic PPARα levels, causing excess free fatty acids, leading to lipotoxicity, and glycerol. In addition, treatment of mice with the PPARα agonist pemafibrate protects against bacterial sepsis by improving hepatic PPARα function, reducing lipotoxicity and tissue damage. Since lipolysis is also increased in sepsis patients and pemafibrate protects after the onset of sepsis, these findings may point toward new therapeutic leads in sepsis.


Asunto(s)
Coinfección/metabolismo , Metabolismo de los Lípidos , Hígado , PPAR alfa , Sepsis , Animales , Humanos , Lípidos , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , PPAR alfa/metabolismo , Sepsis/metabolismo , Sepsis/microbiología
15.
Front Immunol ; 10: 1545, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333672

RESUMEN

Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.


Asunto(s)
Glucocorticoides/inmunología , Receptores de Glucocorticoides/inmunología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Glucocorticoides/uso terapéutico , Humanos , Errores Innatos del Metabolismo/inmunología , Errores Innatos del Metabolismo/patología , Errores Innatos del Metabolismo/terapia , Receptores de Glucocorticoides/deficiencia
16.
Proc Natl Acad Sci U S A ; 116(26): 12942-12951, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31182584

RESUMEN

Glucocorticoid resistance (GCR) is defined as an unresponsiveness to the therapeutic effects, including the antiinflammatory ones of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a problem in the management of inflammatory diseases and can be congenital as well as acquired. The strong proinflammatory cytokine TNF-alpha (TNF) induces an acute form of GCR, not only in mice, but also in several cell lines: e.g., in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-stimulated direct GR-dependent gene up- and down-regulation. We report that TNF has a significant and broad impact on this transcriptional performance of GR, but no impact on nuclear translocation, dimerization, or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome was strongly modulated by TNF. One GR cofactor that interacted significantly less with the receptor under GCR conditions is p300. NFκB activation and p300 knockdown both reduced direct transcriptional output of GR whereas p300 overexpression and NFκB inhibition reverted TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis was supported by FRET studies. This mechanism of GCR opens avenues for therapeutic interventions in GCR diseases.


Asunto(s)
Resistencia a Medicamentos/genética , Proteína p300 Asociada a E1A/metabolismo , Glucocorticoides/farmacología , Inflamación/tratamiento farmacológico , Receptores de Glucocorticoides/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células A549 , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/inmunología , Proteína p300 Asociada a E1A/genética , Femenino , Técnicas de Silenciamiento del Gen , Glucocorticoides/uso terapéutico , Células HEK293 , Humanos , Inflamación/inmunología , Ratones , FN-kappa B/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/inmunología , ARN Interferente Pequeño/metabolismo , RNA-Seq , Receptores de Glucocorticoides/inmunología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
17.
Trends Genet ; 34(12): 899-902, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30243593

RESUMEN

An easily accessible and searchable overview of all protein sequences in the 36 genome-sequenced mouse strains, compared to those in the reference strain C57BL/6J, is now available, as well as an overview of the aberrant proteins in this reference strain. We provide an insight into the advantages of using these databases.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Ratones Endogámicos/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Biología Computacional , Ratones , Ratones Endogámicos C57BL/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
18.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997285

RESUMEN

Mice are extremely important as the premier model organism in human biomedical and mammalian genetic research. The genomes of several tens of mouse inbred strains have been sequenced. They have been compared to the genome of C57BL/6J, considered by convention as the reference genome. Based on a comparison of this reference genome with 36 other sequenced mouse strains, we generated an overview of all protein-coding genes that are deviant in this reference genome, compared with consensus protein-coding mouse gene sequences. We provide PROVEAN scores, reflecting the likelihood that these C57BL/6J proteins have lost function. We thus identified numerous abnormal proteins, and biological pathways, specifically present in C57BL/6J, suggesting the important caveats of this reference mouse strain, and linking candidate genes to some of the best-known phenotypes of this strain.


Asunto(s)
Genoma/genética , Ratones Endogámicos/genética , Mutación , Proteínas/genética , Animales , Densidad Ósea , Variación Genética , Ratones , Ratones Endogámicos C57BL/genética , Fenotipo , Receptores de Quimiocina , Alineación de Secuencia , Receptores Toll-Like , Toxoplasma
19.
Mamm Genome ; 29(7-8): 585-592, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29947962

RESUMEN

Inbred mouse strains derived from the species Mus spretus have been very informative in the study of certain gene polymorphisms in inflammation and infection. Based on our interest in sepsis, we used SPRET/EiJ mice and mapped several critical loci that are linked to sensitivity to cytokine-induced inflammation and endotoxemia. These studies were based on prominent phenotypes that have never been observed in strains derived from Mus musculus and we mapped them at a resolution that enables us to draw conclusions on the mechanisms. Now that the genome of SPRET/EiJ has been sequenced, and other tools have become available, it is time to revisit this strain and emphasize its advantages and disadvantages as a research tool and a discovery platform.


Asunto(s)
Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Infecciones/etiología , Inflamación/etiología , Ratones Endogámicos , Animales , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Antecedentes Genéticos , Variación Genética , Genoma , Genómica/métodos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Lipopolisacáridos/inmunología , Ratones , Especificidad de la Especie
20.
Mol Syst Biol ; 14(5): e8335, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773678

Asunto(s)
Aprendizaje , Sepsis , Niño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...