Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770098

RESUMEN

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Asunto(s)
Anfípodos , Hemocitos , Hemolinfa , Lagos , Sanguijuelas , Animales , Anfípodos/inmunología , Anfípodos/parasitología , Hemolinfa/inmunología , Hemolinfa/parasitología , Sanguijuelas/inmunología , Lagos/parasitología , Hemocitos/inmunología , Inmunidad Celular , Siberia , Interacciones Huésped-Parásitos/inmunología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38452970

RESUMEN

Temperature and mineralization are among the most important environmental factors affecting all processes of aquatic ecosystems, including geographical distribution of water animals. Previously we showed that a brackish water population of Gammarus lacustris, a widespread amphipod, demonstrates substantially higher thermotolerance than a freshwater population. A possible reason for this difference is the fact that brackish water conditions are closer to internal media mineralization. Here we aimed to test this hypothesis and relate the observed effects in animal survival under the heat shock to the status of cellular defence systems. We acclimated four groups of amphipods from the same freshwater population to 0.5 ‰ and 15 ‰ at the temperatures of 6°Ð¡ or 15°Ð¡. Acclimation at 6°Ð¡, but not at 15°Ð¡, to 15 ‰ significantly increased resistance of the amphipods to heat shock at 30°C. At 6°Ð¡ activities of antioxidant enzymes and levels of the lipid peroxidation products in G. lacustris did not react to the increase in mineralization and the heat shock, while the level of HSP70 elevated two-fold in amphipods acclimated to mineralization of 15 ‰ compared to animals acclimated to 0.5 ‰. Thus, the observed increase in thermotolerance could be explained by the higher initial level of HSP70 and potentially other heat shock proteins caused by a less energy-demanding, more isotonic level.


Asunto(s)
Anfípodos , Termotolerancia , Animales , Anfípodos/metabolismo , Ecosistema , Aclimatación , Agua Dulce , Proteínas HSP70 de Choque Térmico/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 121, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229303

RESUMEN

The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA