Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 793096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296074

RESUMEN

Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Neoplasias , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/metabolismo , Humanos , Inmunidad , Inflamación , Neoplasias/metabolismo , Oxidación-Reducción
2.
Atherosclerosis ; 322: 31-38, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33706081

RESUMEN

BACKGROUND AND AIMS: GPIHBP1 is an accessory protein of lipoprotein lipase (LPL) essential for its functioning. Mutations in the GPIHBP1 gene cause a deficit in the action of LPL, leading to severe hypertriglyceridemia and increased risk for acute pancreatitis. METHODS: We describe twelve patients (nine women) with a novel homozygous mutation in intron 2 of the GPIHBP1 gene. RESULTS: All patients were from the Northeastern region of Brazil and presented the same homozygous variant located in a highly conserved 3' splicing acceptor site of the GPIHBP1 gene. This new variant was named c.182-1G > T, according to HGVS recommendations. We verified this new GPIHBP1 variant's effect by using the Human Splicing Finder (HSF) tool. This mutation changes the GPIHBP1 pre-mRNA processing and possibly causes the skipping of the exon 3 of the GPIHBP1 gene, affecting almost 50% of the cysteine-rich Lys6 GPIHBP1 domain. Patients presented with severe hypertriglyceridemia (2351 mg/dl [885-20600]) and low HDL (18 mg/dl [5-41). Four patients (33%) had a previous history of acute pancreatitis. CONCLUSIONS: We describe a novel GPIHBP1 pathogenic intronic mutation of patients from the Northeast region of Brazil, suggesting the occurrence of a founder effect.


Asunto(s)
Hiperlipoproteinemia Tipo I , Pancreatitis , Receptores de Lipoproteína , Enfermedad Aguda , Brasil , Femenino , Humanos , Hiperlipoproteinemia Tipo I/genética , Lipoproteína Lipasa/genética , Masculino , Mutación , Pancreatitis/genética , Receptores de Lipoproteína/genética
3.
Front Genet ; 12: 784963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111200

RESUMEN

Xeroderma pigmentosum (XP) is a rare genetic condition in which exposure to sunlight leads to a high tumor incidence due to defective DNA repair machinery. Herein, we investigated seven patients clinically diagnosed with XP living in a small city, Montanhas (Rio Grande do Norte), in the Northeast region of Brazil. We performed high-throughput sequencing and, surprisingly, identified two different mutated genes. Six patients carry a novel homozygote mutation in the POLH/XPV gene, c.672_673insT (p.Leu225Serfs*33), while one patient carries a homozygote mutation in the XPC gene, c.2251-1G>C. This latter mutation was previously described in Southeastern Africa (Comoro Island and Mozambique), Pakistan, and in a high incidence in Brazil. The XP-C patient had the first symptoms before the first year of life with aggressive ophthalmologic tumor progression and a melanoma onset at 7 years of age. The XP-V patients presented a milder phenotype with later onset of the disorder (mean age of 16 years old), and one of the six XP-V patients developed melanoma at 72 years. The photoprotection is minimal among them, mainly for the XP-V patients. The differences in the disease severity between XP-C (more aggressive) and XP-V (milder) patients are obvious and point to the major role of photoprotection in the XPs. We estimate that the incidence of XP patients at Montanhas can be higher, but with no diagnosis, due to poor health assistance. Patients still suffer from the stigmatization of the condition, impairing diagnosis, education for sun protection, and medical care.

4.
Hered Cancer Clin Pract ; 13(1): 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25632310

RESUMEN

BACKGROUND: Male breast cancer (MBC) is an uncommon disease that has been the focus of limited research. It is estimated that approximately 10% of men with breast cancer have a genetic predisposition, with BRCA2 being the most prevalent genetic mutation. Here we describe the case of MBC in a 64-year-old man who presented on physical examination a nodule in his left breast and declared to have an extensive family history of cancer. METHODS AND RESULTS: The patient was firstly diagnosed with an invasive ductal carcinoma (IDC) with histological grade III, nuclear grade 3, pT4N2Mx and positive for hormonal receptors and HER2. Exome sequencing was performed by massive parallel sequencing which had detected a novel BRCA2 germline mutation that is a large genomic deletion of 3,492 nucleotides including BRCA2 exon 14, and this deletion is out of frame and is predicted to lead to a stop codon in exon 15 at codon 2,496. CONCLUSION: Large rearrangements in BRCA1 and BRCA2 occur in a small percentage (<1%) of patients tested for hereditary breast and ovarian cancer. This is the first report of the mutation del3492 in BRCA2 exon 14, which leads to a truncated protein and therefore is clinically relevant. Mutation segregation analysis should be further done in the Brazilian population. Herein we highlight the importance of next-generation sequencing in the detection of large genomic deletions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA