Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Skeletal Radiol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771507

RESUMEN

OBJECTIVE: This study aims to explore the feasibility of employing convolutional neural networks for detecting and localizing implant cutouts on anteroposterior pelvic radiographs. MATERIALS AND METHODS: The research involves the development of two Deep Learning models. Initially, a model was created for image-level classification of implant cutouts using 40191 pelvic radiographs obtained from a single institution. The radiographs were partitioned into training, validation, and hold-out test datasets in a 6/2/2 ratio. Performance metrics including the area under the receiver operator characteristics curve (AUROC), sensitivity, and specificity were calculated using the test dataset. Additionally, a second object detection model was trained to localize implant cutouts within the same dataset. Bounding box visualizations were generated on images predicted as cutout-positive by the classification model in the test dataset, serving as an adjunct for assessing algorithm validity. RESULTS: The classification model had an accuracy of 99.7%, sensitivity of 84.6%, specificity of 99.8%, AUROC of 0.998 (95% CI: 0.996, 0.999) and AUPRC of 0.774 (95% CI: 0.646, 0.880). From the pelvic radiographs predicted as cutout-positive, the object detection model could achieve 95.5% localization accuracy on true positive images, but falsely generated 14 results from the 15 false-positive predictions. CONCLUSION: The classification model showed fair accuracy for detection of implant cutouts, while the object detection model effectively localized cutout. This serves as proof of concept of using a deep learning-based approach for classification and localization of implant cutouts from pelvic radiographs.

2.
NPJ Digit Med ; 7(1): 115, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704440

RESUMEN

Spectral-domain optical coherence tomography (SDOCT) is the gold standard of imaging the eye in clinics. Penetration depth with such devices is, however, limited and visualization of the choroid, which is essential for diagnosing chorioretinal disease, remains limited. Whereas swept-source OCT (SSOCT) devices allow for visualization of the choroid these instruments are expensive and availability in praxis is limited. We present an artificial intelligence (AI)-based solution to enhance the visualization of the choroid in OCT scans and allow for quantitative measurements of choroidal metrics using generative deep learning (DL). Synthetically enhanced SDOCT B-scans with improved choroidal visibility were generated, leveraging matching images to learn deep anatomical features during the training. Using a single-center tertiary eye care institution cohort comprising a total of 362 SDOCT-SSOCT paired subjects, we trained our model with 150,784 images from 410 healthy, 192 glaucoma, and 133 diabetic retinopathy eyes. An independent external test dataset of 37,376 images from 146 eyes was deployed to assess the authenticity and quality of the synthetically enhanced SDOCT images. Experts' ability to differentiate real versus synthetic images was poor (47.5% accuracy). Measurements of choroidal thickness, area, volume, and vascularity index, from the reference SSOCT and synthetically enhanced SDOCT, showed high Pearson's correlations of 0.97 [95% CI: 0.96-0.98], 0.97 [0.95-0.98], 0.95 [0.92-0.98], and 0.87 [0.83-0.91], with intra-class correlation values of 0.99 [0.98-0.99], 0.98 [0.98-0.99], and 0.95 [0.96-0.98], 0.93 [0.91-0.95], respectively. Thus, our DL generative model successfully generated realistic enhanced SDOCT data that is indistinguishable from SSOCT images providing improved visualization of the choroid. This technology enabled accurate measurements of choroidal metrics previously limited by the imaging depth constraints of SDOCT. The findings open new possibilities for utilizing affordable SDOCT devices in studying the choroid in both healthy and pathological conditions.

3.
Sci Rep ; 14(1): 10483, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714764

RESUMEN

Automated machine learning (AutoML) allows for the simplified application of machine learning to real-world problems, by the implicit handling of necessary steps such as data pre-processing, feature engineering, model selection and hyperparameter optimization. This has encouraged its use in medical applications such as imaging. However, the impact of common parameter choices such as the number of trials allowed, and the resolution of the input images, has not been comprehensively explored in existing literature. We therefore benchmark AutoKeras (AK), an open-source AutoML framework, against several bespoke deep learning architectures, on five public medical datasets representing a wide range of imaging modalities. It was found that AK could outperform the bespoke models in general, although at the cost of increased training time. Moreover, our experiments suggest that a large number of trials and higher resolutions may not be necessary for optimal performance to be achieved.


Asunto(s)
Aprendizaje Automático , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico por Imagen/métodos , Aprendizaje Profundo , Algoritmos
4.
PLOS Digit Health ; 3(4): e0000341, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630683

RESUMEN

Large language models (LLMs) underlie remarkable recent advanced in natural language processing, and they are beginning to be applied in clinical contexts. We aimed to evaluate the clinical potential of state-of-the-art LLMs in ophthalmology using a more robust benchmark than raw examination scores. We trialled GPT-3.5 and GPT-4 on 347 ophthalmology questions before GPT-3.5, GPT-4, PaLM 2, LLaMA, expert ophthalmologists, and doctors in training were trialled on a mock examination of 87 questions. Performance was analysed with respect to question subject and type (first order recall and higher order reasoning). Masked ophthalmologists graded the accuracy, relevance, and overall preference of GPT-3.5 and GPT-4 responses to the same questions. The performance of GPT-4 (69%) was superior to GPT-3.5 (48%), LLaMA (32%), and PaLM 2 (56%). GPT-4 compared favourably with expert ophthalmologists (median 76%, range 64-90%), ophthalmology trainees (median 59%, range 57-63%), and unspecialised junior doctors (median 43%, range 41-44%). Low agreement between LLMs and doctors reflected idiosyncratic differences in knowledge and reasoning with overall consistency across subjects and types (p>0.05). All ophthalmologists preferred GPT-4 responses over GPT-3.5 and rated the accuracy and relevance of GPT-4 as higher (p<0.05). LLMs are approaching expert-level knowledge and reasoning skills in ophthalmology. In view of the comparable or superior performance to trainee-grade ophthalmologists and unspecialised junior doctors, state-of-the-art LLMs such as GPT-4 may provide useful medical advice and assistance where access to expert ophthalmologists is limited. Clinical benchmarks provide useful assays of LLM capabilities in healthcare before clinical trials can be designed and conducted.

5.
Lancet Digit Health ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38658283

RESUMEN

With the rapid growth of interest in and use of large language models (LLMs) across various industries, we are facing some crucial and profound ethical concerns, especially in the medical field. The unique technical architecture and purported emergent abilities of LLMs differentiate them substantially from other artificial intelligence (AI) models and natural language processing techniques used, necessitating a nuanced understanding of LLM ethics. In this Viewpoint, we highlight ethical concerns stemming from the perspectives of users, developers, and regulators, notably focusing on data privacy and rights of use, data provenance, intellectual property contamination, and broad applications and plasticity of LLMs. A comprehensive framework and mitigating strategies will be imperative for the responsible integration of LLMs into medical practice, ensuring alignment with ethical principles and safeguarding against potential societal risks.

6.
Nat Commun ; 15(1): 3650, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688925

RESUMEN

Utilization of digital technologies for cataract screening in primary care is a potential solution for addressing the dilemma between the growing aging population and unequally distributed resources. Here, we propose a digital technology-driven hierarchical screening (DH screening) pattern implemented in China to promote the equity and accessibility of healthcare. It consists of home-based mobile artificial intelligence (AI) screening, community-based AI diagnosis, and referral to hospitals. We utilize decision-analytic Markov models to evaluate the cost-effectiveness and cost-utility of different cataract screening strategies (no screening, telescreening, AI screening and DH screening). A simulated cohort of 100,000 individuals from age 50 is built through a total of 30 1-year Markov cycles. The primary outcomes are incremental cost-effectiveness ratio and incremental cost-utility ratio. The results show that DH screening dominates no screening, telescreening and AI screening in urban and rural China. Annual DH screening emerges as the most economically effective strategy with 341 (338 to 344) and 1326 (1312 to 1340) years of blindness avoided compared with telescreening, and 37 (35 to 39) and 140 (131 to 148) years compared with AI screening in urban and rural settings, respectively. The findings remain robust across all sensitivity analyses conducted. Here, we report that DH screening is cost-effective in urban and rural China, and the annual screening proves to be the most cost-effective option, providing an economic rationale for policymakers promoting public eye health in low- and middle-income countries.


Asunto(s)
Catarata , Análisis Costo-Beneficio , Tamizaje Masivo , Humanos , China/epidemiología , Catarata/economía , Catarata/diagnóstico , Catarata/epidemiología , Persona de Mediana Edad , Tamizaje Masivo/economía , Tamizaje Masivo/métodos , Masculino , Tecnología Digital/economía , Femenino , Cadenas de Markov , Anciano , Inteligencia Artificial , Telemedicina/economía , Telemedicina/métodos
7.
Can J Ophthalmol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38604239

RESUMEN

OBJECTIVE: To assess the safety of replacing the postoperative week 1 (POW1) clinic visit with a nurse-conducted telephone call. DESIGN: Retrospective observational study that included cases from January 2019 to June 2021. PARTICIPANTS: Patients who had undergone uncomplicated phacoemulsification surgery with an unremarkable postoperative day 1 (POD1) examination. METHODS: All patients were seen in clinic on POD1 by an ophthalmologist. They then had a telephone conversation with a nurse at POW1 and subsequently an in-person postoperative month 1 (POM1) clinic consultation with an ophthalmologist. Main outcome measure was the incidence of unexpected management changes related to cataract surgery within POM1. Data also were collected on the reasons for unscheduled patient-initiated visits, additional procedures or medications, and postoperative visual acuity worse than 6/12 at POM1. RESULTS: Of the 20,475 patients, 541 patients (2.64%) had an unexpected management change within POM1. There were 565 patients (2.76%) who had self-initiated unscheduled visits between POD1 to POM1. There were 23 patients (0.11%) who required additional surgery within POM1 and 1 patient (0.005%) with endophthalmitis. The most common indication for additional surgical procedures was retained lens material (7 patients, 30.43%). Visual acuity was worse than 6/12 in 1,199 patients (6.22%), with the most common causes attributed to preexisting ocular conditions. CONCLUSIONS: These results suggest that replacing the POW1 visit with a nurse-conducted telephone consult for patients who have undergone uncomplicated phacoemulsification surgery and had a normal POD1 consultation is safe.

9.
Eye Vis (Lond) ; 11(1): 11, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494521

RESUMEN

BACKGROUND: To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm2. METHODS: Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm2 and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated. RESULTS: The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm2. CONCLUSIONS: Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm2 in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.

10.
Singapore Med J ; 65(3): 159-166, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527300

RESUMEN

ABSTRACT: With the rise of generative artificial intelligence (AI) and AI-powered chatbots, the landscape of medicine and healthcare is on the brink of significant transformation. This perspective delves into the prospective influence of AI on medical education, residency training and the continuing education of attending physicians or consultants. We begin by highlighting the constraints of the current education model, challenges in limited faculty, uniformity amidst burgeoning medical knowledge and the limitations in 'traditional' linear knowledge acquisition. We introduce 'AI-assisted' and 'AI-integrated' paradigms for medical education and physician training, targeting a more universal, accessible, high-quality and interconnected educational journey. We differentiate between essential knowledge for all physicians, specialised insights for clinician-scientists and mastery-level proficiency for clinician-computer scientists. With the transformative potential of AI in healthcare and service delivery, it is poised to reshape the pedagogy of medical education and residency training.


Asunto(s)
Educación Médica , Médicos , Humanos , Inteligencia Artificial , Estudios Prospectivos , Educación Continua
11.
Cell Rep Med ; 5(2): 101419, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340728

RESUMEN

Federated learning (FL) is a distributed machine learning framework that is gaining traction in view of increasing health data privacy protection needs. By conducting a systematic review of FL applications in healthcare, we identify relevant articles in scientific, engineering, and medical journals in English up to August 31st, 2023. Out of a total of 22,693 articles under review, 612 articles are included in the final analysis. The majority of articles are proof-of-concepts studies, and only 5.2% are studies with real-life application of FL. Radiology and internal medicine are the most common specialties involved in FL. FL is robust to a variety of machine learning models and data types, with neural networks and medical imaging being the most common, respectively. We highlight the need to address the barriers to clinical translation and to assess its real-world impact in this new digital data-driven healthcare scene.


Asunto(s)
Aprendizaje Automático , Medicina , Humanos , Redes Neurales de la Computación
12.
Curr Opin Ophthalmol ; 35(3): 205-209, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334288

RESUMEN

PURPOSE OF REVIEW: This review seeks to provide a summary of the most recent research findings regarding the utilization of ChatGPT, an artificial intelligence (AI)-powered chatbot, in the field of ophthalmology in addition to exploring the limitations and ethical considerations associated with its application. RECENT FINDINGS: ChatGPT has gained widespread recognition and demonstrated potential in enhancing patient and physician education, boosting research productivity, and streamlining administrative tasks. In various studies examining its utility in ophthalmology, ChatGPT has exhibited fair to good accuracy, with its most recent iteration showcasing superior performance in providing ophthalmic recommendations across various ophthalmic disorders such as corneal diseases, orbital disorders, vitreoretinal diseases, uveitis, neuro-ophthalmology, and glaucoma. This proves beneficial for patients in accessing information and aids physicians in triaging as well as formulating differential diagnoses. Despite such benefits, ChatGPT has limitations that require acknowledgment including the potential risk of offering inaccurate or harmful information, dependence on outdated data, the necessity for a high level of education for data comprehension, and concerns regarding patient privacy and ethical considerations within the research domain. SUMMARY: ChatGPT is a promising new tool that could contribute to ophthalmic healthcare education and research, potentially reducing work burdens. However, its current limitations necessitate a complementary role with human expert oversight.


Asunto(s)
Inteligencia Artificial , Médicos , Humanos , Escolaridad , Manejo de la Enfermedad , Consejo
13.
Ophthalmol Sci ; 4(3): 100441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420613

RESUMEN

Purpose: We aim to use fundus fluorescein angiography (FFA) to label the capillaries on color fundus (CF) photographs and train a deep learning model to quantify retinal capillaries noninvasively from CF and apply it to cardiovascular disease (CVD) risk assessment. Design: Cross-sectional and longitudinal study. Participants: A total of 90732 pairs of CF-FFA images from 3893 participants for segmentation model development, and 49229 participants in the UK Biobank for association analysis. Methods: We matched the vessels extracted from FFA and CF, and used vessels from FFA as labels to train a deep learning model (RMHAS-FA) to segment retinal capillaries using CF. We tested the model's accuracy on a manually labeled internal test set (FundusCapi). For external validation, we tested the segmentation model on 7 vessel segmentation datasets, and investigated the clinical value of the segmented vessels in predicting CVD events in the UK Biobank. Main Outcome Measures: Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity for segmentation. Hazard ratio (HR; 95% confidence interval [CI]) for Cox regression analysis. Results: On the FundusCapi dataset, the segmentation performance was AUC = 0.95, accuracy = 0.94, sensitivity = 0.90, and specificity = 0.93. Smaller vessel skeleton density had a stronger correlation with CVD risk factors and incidence (P < 0.01). Reduced density of small vessel skeletons was strongly associated with an increased risk of CVD incidence and mortality for women (HR [95% CI] = 0.91 [0.84-0.98] and 0.68 [0.54-0.86], respectively). Conclusions: Using paired CF-FFA images, we automated the laborious manual labeling process and enabled noninvasive capillary quantification from CF, supporting its potential as a sensitive screening method for identifying individuals at high risk of future CVD events. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

14.
IEEE Trans Med Imaging ; 43(5): 1945-1957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38206778

RESUMEN

Color fundus photography (CFP) and Optical coherence tomography (OCT) images are two of the most widely used modalities in the clinical diagnosis and management of retinal diseases. Despite the widespread use of multimodal imaging in clinical practice, few methods for automated diagnosis of eye diseases utilize correlated and complementary information from multiple modalities effectively. This paper explores how to leverage the information from CFP and OCT images to improve the automated diagnosis of retinal diseases. We propose a novel multimodal learning method, named geometric correspondence-based multimodal learning network (GeCoM-Net), to achieve the fusion of CFP and OCT images. Specifically, inspired by clinical observations, we consider the geometric correspondence between the OCT slice and the CFP region to learn the correlated features of the two modalities for robust fusion. Furthermore, we design a new feature selection strategy to extract discriminative OCT representations by automatically selecting the important feature maps from OCT slices. Unlike the existing multimodal learning methods, GeCoM-Net is the first method that formulates the geometric relationships between the OCT slice and the corresponding region of the CFP image explicitly for CFP and OCT fusion. Experiments have been conducted on a large-scale private dataset and a publicly available dataset to evaluate the effectiveness of GeCoM-Net for diagnosing diabetic macular edema (DME), impaired visual acuity (VA) and glaucoma. The empirical results show that our method outperforms the current state-of-the-art multimodal learning methods by improving the AUROC score 0.4%, 1.9% and 2.9% for DME, VA and glaucoma detection, respectively.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen Multimodal , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Imagen Multimodal/métodos , Interpretación de Imagen Asistida por Computador/métodos , Algoritmos , Enfermedades de la Retina/diagnóstico por imagen , Retina/diagnóstico por imagen , Aprendizaje Automático , Fotograbar/métodos , Técnicas de Diagnóstico Oftalmológico , Bases de Datos Factuales
15.
Ophthalmol Retina ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38280425

RESUMEN

OBJECTIVE: To review recent technological advancement in imaging, surgical visualization, robotics technology, and the use of artificial intelligence in surgical vitreoretinal (VR) diseases. BACKGROUND: Technological advancements in imaging enhance both preoperative and intraoperative management of surgical VR diseases. Widefield imaging in fundal photography and OCT can improve assessment of peripheral retinal disorders such as retinal detachments, degeneration, and tumors. OCT angiography provides a rapid and noninvasive imaging of the retinal and choroidal vasculature. Surgical visualization has also improved with intraoperative OCT providing a detailed real-time assessment of retinal layers to guide surgical decisions. Heads-up display and head-mounted display utilize 3-dimensional technology to provide surgeons with enhanced visual guidance and improved ergonomics during surgery. Intraocular robotics technology allows for greater surgical precision and is shown to be useful in retinal vein cannulation and subretinal drug delivery. In addition, deep learning techniques leverage on diverse data including widefield retinal photography and OCT for better predictive accuracy in classification, segmentation, and prognostication of many surgical VR diseases. CONCLUSION: This review article summarized the latest updates in these areas and highlights the importance of continuous innovation and improvement in technology within the field. These advancements have the potential to reshape management of surgical VR diseases in the very near future and to ultimately improve patient care. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

16.
Cell Rep Med ; 5(1): 101356, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232690

RESUMEN

This perspective highlights the importance of addressing social determinants of health (SDOH) in patient health outcomes and health inequity, a global problem exacerbated by the COVID-19 pandemic. We provide a broad discussion on current developments in digital health and artificial intelligence (AI), including large language models (LLMs), as transformative tools in addressing SDOH factors, offering new capabilities for disease surveillance and patient care. Simultaneously, we bring attention to challenges, such as data standardization, infrastructure limitations, digital literacy, and algorithmic bias, that could hinder equitable access to AI benefits. For LLMs, we highlight potential unique challenges and risks including environmental impact, unfair labor practices, inadvertent disinformation or "hallucinations," proliferation of bias, and infringement of copyrights. We propose the need for a multitiered approach to digital inclusion as an SDOH and the development of ethical and responsible AI practice frameworks globally and provide suggestions on bridging the gap from development to implementation of equitable AI technologies.


Asunto(s)
Inteligencia Artificial , COVID-19 , Humanos , Pandemias , Determinantes Sociales de la Salud , COVID-19/epidemiología , Lenguaje
17.
Pediatr Emerg Care ; 40(1): 76-81, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011228

RESUMEN

OBJECTIVES: Emergency medicine (EM) confers a high risk of burnout that may be exacerbated by the COVID-19 pandemic. We aimed to determine the longitudinal prevalence of burnout in pediatric EM (PEM) physicians/fellows working in tertiary PEM departments across Canada and its fluctuation during the pandemic. METHODS: A national mixed-methods survey using a validated 2-question proxy for burnout was distributed monthly through 9 months. The primary outcome was the trajectory in probability of burnout, which was examined as both emotional exhaustion (EE) and depersonalization (DP), EE alone, and DP alone. Secondary outcomes investigated burnout and its association with demographic variables. Quantitative data were analyzed using logistic regression for primary outcomes and subanalyses for secondary outcomes. Conventional content analysis was used to analyze qualitative data and generate themes. RESULTS: From February to October 2021, 92 of 98 respondents completed at least 1 survey, 78% completed at least 3 consecutive surveys, and 48% completed at least 6 consecutive surveys. Predicted probability of EE was bimodal with peaks in May (25%) and October (22%) 2021. Rates of DP alone or having both EE and DP were approximately 1% and stable over the study period. Mid-career physicians were at lower risk of EE (odds ratio, 0.02; 95% confidence interval, 0-0.22) compared with early-career physicians. Underlying drivers of burnout were multifaceted. CONCLUSIONS: Our study suggests that increased COVID-19 case burden was correlated with EE levels during the third and fourth waves of the pandemic. Emotional exhaustion was worsened by systemic factors, and interventions must target common themes of unsustainable workloads and overwhelming lack of control.


Asunto(s)
Agotamiento Profesional , COVID-19 , Médicos , Humanos , Niño , Pandemias , COVID-19/epidemiología , Prevalencia , Médicos/psicología , Agotamiento Profesional/epidemiología , Agotamiento Profesional/psicología , Agotamiento Emocional , Encuestas y Cuestionarios
19.
JAMA Ophthalmol ; 142(1): 15-23, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019503

RESUMEN

Importance: Clinical trial results of topical atropine eye drops for childhood myopia control have shown inconsistent outcomes across short-term studies, with little long-term safety or other outcomes reported. Objective: To report the long-term safety and outcomes of topical atropine for childhood myopia control. Design, Setting, and Participants: This prospective, double-masked observational study of the Atropine for the Treatment of Myopia (ATOM) 1 and ATOM2 randomized clinical trials took place at 2 single centers and included adults reviewed in 2021 through 2022 from the ATOM1 study (atropine 1% vs placebo; 1999 through 2003) and the ATOM2 study (atropine 0.01% vs 0.1% vs 0.5%; 2006 through 2012). Main Outcome Measures: Change in cycloplegic spherical equivalent (SE) with axial length (AL); incidence of ocular complications. Results: Among the original 400 participants in each original cohort, the study team evaluated 71 of 400 ATOM1 adult participants (17.8% of original cohort; study age, mean [SD] 30.5 [1.2] years; 40.6% female) and 158 of 400 ATOM2 adult participants (39.5% of original cohort; study age, mean [SD], 24.5 [1.5] years; 42.9% female) whose baseline characteristics (SE and AL) were representative of the original cohort. In this study, evaluating ATOM1 participants, the mean (SD) SE and AL were -5.20 (2.46) diopters (D), 25.87 (1.23) mm and -6.00 (1.63) D, 25.90 (1.21) mm in the 1% atropine-treated and placebo groups, respectively (difference of SE, 0.80 D; 95% CI, -0.25 to 1.85 D; P = .13; difference of AL, -0.03 mm; 95% CI, -0.65 to 0.58 mm; P = .92). In ATOM2 participants, the mean (SD) SE and AL was -6.40 (2.21) D; 26.25 (1.34) mm; -6.81 (1.92) D, 26.28 (0.99) mm; and -7.19 (2.87) D, 26.31 (1.31) mm in the 0.01%, 0.1%, and 0.5% atropine groups, respectively. There was no difference in the 20-year incidence of cataract/lens opacities, myopic macular degeneration, or parapapillary atrophy (ß/γ zone) comparing the 1% atropine-treated group vs the placebo group. Conclusions and Relevance: Among approximately one-quarter of the original participants, use of short-term topical atropine eye drops ranging from 0.01% to 1.0% for a duration of 2 to 4 years during childhood was not associated with differences in final refractive errors 10 to 20 years after treatment. There was no increased incidence of treatment or myopia-related ocular complications in the 1% atropine-treated group vs the placebo group. These findings may affect the design of future clinical trials, as further studies are required to investigate the duration and concentration of atropine for childhood myopia control.


Asunto(s)
Catarata , Enfermedades Genéticas Ligadas al Cromosoma X , Miopía Degenerativa , Miopía , Humanos , Femenino , Lactante , Masculino , Atropina/administración & dosificación , Estudios Prospectivos , Soluciones Oftálmicas/administración & dosificación , Administración Tópica , Refracción Ocular , Miopía Degenerativa/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...