Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-445523

RESUMEN

A major challenge to end the pandemic caused by SARS-CoV-2 is to develop a broadly protective vaccine. As the key immunogen, the spike protein is frequently mutated with conserved epitopes shielded by glycans. Here, we reveal that spike glycosylation has site-differential effects on viral infectivity and lung epithelial cells generate spike with more infective glycoforms. Compared to the fully glycosylated spike, immunization of spike protein with N-glycans trimmed to the monoglycosylated state (Smg) elicits stronger immune responses and better protection for hACE2 transgenic mice against variants of concern. In addition, a broadly neutralizing monoclonal antibody was identified from the Smg immunized mice, demonstrating that removal of glycan shields to better expose the conserved sequences is an effective and simple approach to broad-spectrum vaccine development. One-Sentence SummaryRemoving glycan shields to expose conserved epitopes is an effective approach to develop a broad-spectrum SARS-CoV-2 vaccine.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-267526

RESUMEN

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 13.0% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) and over half of anti-nucleocapsid (19 of 35) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-RBD, three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. At last, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-148387

RESUMEN

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...