Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadi5488, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851802

RESUMEN

Modulating neural activity with electrical or chemical stimulus can be used for fundamental and applied research. Typically, neuronal stimulation is performed with intracellular and extracellular electrodes that deliver brief electrical pulses to neurons. However, alternative wireless methodologies based on functional materials may allow clinical translation of technologies to modulate neuronal function. Here, we show that the organic semiconducting oligomer 4-[2-{2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)thiophen-3-yl}ethoxy]butane-1-sulfonate (ETE-S) induces precise behaviors in the small invertebrate Hydra, which were dissected through pharmacological and electrophysiological approaches. ETE-S-induced behavioral response relies on the presence of head neurons and calcium ions and is prevented by drugs targeting ionotropic channels and muscle contraction. Moreover, ETE-S affects Hydra's electrical activity enhancing the contraction burst frequency. The unexpected neuromodulatory function played by this conjugated oligomer on a simple nerve net opens intriguing research possibilities on fundamental chemical and physical phenomena behind organic bioelectronic interfaces for neuromodulation and on alternative methods that could catalyze a wide expansion of this rising technology for clinical applications.


Asunto(s)
Conducta Animal , Fenómenos Electrofisiológicos , Contracción Muscular , Animales , Electrodos , Neuronas
2.
Adv Healthc Mater ; 11(19): e2200366, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35861262

RESUMEN

Next generation bioengineering strives to identify crucial cues that trigger regeneration of damaged tissues, and to control the cells that execute these programs with biomaterials and devices. Molecular and biophysical mechanisms driving embryogenesis may inspire novel tools to reactivate developmental programs in situ. Here nanoparticles based on conjugated polymers are employed for optical control of regenerating tissues by using an animal with unlimited regenerative potential, the polyp Hydra, as in vivo model, and human keratinocytes as an in vitro model to investigate skin repair. By integrating animal, cellular, molecular, and biochemical approaches, nanoparticles based on poly-3-hexylthiophene (P3HT) are shown able to enhance regeneration kinetics, stem cell proliferation, and biomolecule oxidation levels. Opposite outputs are obtained with PCPDTBT-NPs (Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b'] dithiophene)-alt-4,7(2,1,3-benzothiadiazole)], causing a beneficial effect on Hydra regeneration but not on the migratory capability of keratinocytes. These results suggest that the artificial modulation of the redox potential in injured tissues may represent a powerful modality to control their regenerative potential. Importantly, the possibility to fine-tuning materials' photocatalytic efficiency may enable a biphasic modulation over a wide dynamic range, which can be exploited to augment the tissue regenerative capacity or inhibit the unlimited potential of cancerous cells in pathological contexts.


Asunto(s)
Nanopartículas , Energía Solar , Animales , Materiales Biocompatibles , Humanos , Nanopartículas/química , Polímeros/química
3.
Bioact Mater ; 10: 107-116, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34901533

RESUMEN

Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active µm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 µm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.

4.
Front Cell Dev Biol ; 9: 788117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988080

RESUMEN

Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population's response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate Hydra vulgaris, and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/ß-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.

5.
iScience ; 23(4): 101022, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283525

RESUMEN

Engineering protein-based biomaterials is extremely challenging in bioelectronics, medicine, and materials science, as mechanical, electrical, and optical properties need to be merged to biocompatibility and resistance to biodegradation. An effective strategy is the engineering of physiological processes in situ, by addition of new properties to endogenous components. Here we show that a green fluorescent semiconducting thiophene dye, DTTO, promotes, in vivo, the biogenesis of fluorescent conductive protein microfibers via metabolic pathways. By challenging the simple freshwater polyp Hydra vulgaris with DTTO, we demonstrate the stable incorporation of the dye into supramolecular protein-dye co-assembled microfibers without signs of toxicity. An integrated multilevel analysis including morphological, optical, spectroscopical, and electrical characterization shows electrical conductivity of biofibers, opening the door to new opportunities for augmenting electronic functionalities within living tissue, which may be exploited for the regulation of cell and animal physiology, or in pathological contexts to enhance bioelectrical signaling.

6.
ACS Appl Mater Interfaces ; 12(12): 13718-13730, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32134240

RESUMEN

Photothermal therapy (PTT) is an efficient method of inducing localized hyperthermia and can be achieved using gold nanoparticles as photothermal agents. However, there are many hurdles to get over before this therapy can safely reach the clinics, including nanoparticles' optimal shape and the accurate prediction of cellular responses. Here, we describe the synthesis of gold nanorods and nanoprisms with similar surface plasmon resonances in the near-infrared (NIR) and comparable photothermal conversion efficiencies and characterize the response to NIR irradiation in two biological systems, melanoma cells and the small invertebrate Hydra vulgaris. By integrating animal, cellular, and molecular biology approaches, we show a diverse outcome of nanorods and nanoprisms on the two systems, sustained by the elicitation of different pathways, from necrosis to programmed cell death mechanisms (apoptosis and necroptosis). The comparative multilevel analysis shows great accuracy of in vivo invertebrate models to predict overall responses to photothermal challenging and superior photothermal performance of nanoprisms. Understanding the molecular pathways of these responses may help develop optimized nanoheaters that, safe by design, may improve PTT efficacy for clinical purposes.


Asunto(s)
Apoptosis/efectos de la radiación , Muerte Celular/efectos de la radiación , Melanoma/terapia , Nanotubos/química , Terapia Fototérmica , Animales , Línea Celular Tumoral , Oro/química , Humanos , Hydra/efectos de la radiación , Hipertermia Inducida/métodos , Nanopartículas del Metal/química , Necrosis/terapia , Resonancia por Plasmón de Superficie
7.
Environ Sci Technol ; 53(7): 3938-3947, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30821457

RESUMEN

Indium phosphide quantum dots (QDs) have emerged as a new class of fluorescent nanocrystals for manifold applications, from biophotonics to nanomedicine. Recent efforts in improving the photoluminescence quantum yield, the chemical stability and the biocompatibility turned them into a valid alternative to well established Cd-based nanocrystals. In vitro studies provided first evidence for the lower toxicity of In-based QDs. Nonetheless, an urgent need exists for further assessment of the potential toxic effects in vivo. Here we use the freshwater polyp Hydra vulgaris, a well-established model previously adopted to assess the toxicity of CdSe/CdS nanorods and CdTe QDs. A systematic multilevel analysis was carried out in vivo, ex vivo, and in vitro comparing toxicity end points of CdSe- and InP-based QDs, passivated by ZnSe/ZnS shells and surface functionalized with penicillamine. Final results demonstrate that both the chemical composition of the QD core (InP vs CdSe) and the shell play a crucial role for final outcomes. Remarkably, in absence of in vivo alterations, cell and molecular alterations revealed hidden toxicity aspects, highlighting the biosafety of InP-based nanocrystals and outlining the importance of integrated multilevel analyses for proper QDs risk assessment.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Telurio , Cadmio , Contención de Riesgos Biológicos , Indio , Análisis Multinivel , Compuestos de Zinc
8.
Adv Biosyst ; 3(4): e1800247, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-32627433

RESUMEN

Drug nanocarriers based on nanostructured materials are very promising for precision and personalized medicine applications. Diatomite porous biosilica has been recently proposed as a novel and effective material in formulations of drug systems for oral and systemic delivery. In this paper, the cytotoxicity of hybrid diatomite silica functionalized nanovectors is assessed in vivo in a living model organism, the cnidarian freshwater polyp Hydra vulgaris. Hydra specimens are exposed to modified diatomite nanoparticles by prolonged incubation within their medium. Uptake and toxicological effects on Hydra are examined from viability and genetic points of view. High concentrations, up to 3.5 g L-1 for 72 h, of diatomite modified nanoparticles do not affect Hydra morphology nor do growth rate and the genetic analysis confirm the biosafety of this material, opening the way to new applications in nanomedicine.


Asunto(s)
Tierra de Diatomeas , Hydra , Modelos Biológicos , Nanoestructuras/toxicidad , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Tierra de Diatomeas/farmacocinética , Tierra de Diatomeas/toxicidad , Expresión Génica/efectos de los fármacos , Hydra/citología , Hydra/efectos de los fármacos , Hydra/genética , Hydra/metabolismo , Mutágenos , Pruebas de Toxicidad
9.
Int J Dev Biol ; 62(4-5): 311-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29877570

RESUMEN

Understanding the dynamic cellular behaviours driving morphogenesis and regeneration is a long-standing challenge in biology. Live imaging, together with genetically encoded reporters, may provide the necessary tool to address this issue, permitting the in vivo monitoring of the spatial and temporal expression dynamics of a gene of interest during a variety of developmental processes. Canonical Wnt/ß-catenin signalling controls a plethora of cellular activities during development, regeneration and adulthood throughout the animal kingdom. Several reporters have been produced in animal models to reveal sites of active Wnt signalling. In order to monitor in vivo Wnt/ß-catenin signalling activity in the freshwater polyp Hydra vulgaris, we generated a ß-cat-eGFP transgenic Hydra, in which eGFP is driven by the Hydra ß-catenin promoter. We characterized the expression dynamics during budding, regeneration and chemical activation of the Wnt/ß-cat signalling pathway using light sheet fluorescence microscopy. Live imaging of the ß-cat-eGFP lines recapitulated the previously reported endogenous expression pattern of ß-catenin and revealed the dynamic appearance of novel sites of Wnt/ß-catenin signalling, that earlier evaded detection by mean of in situ hybridization. By combining the Wnt activity read-out efficiency of the ß-catenin promoter with advanced imaging, we have created a novel model system to monitor in real time the activity of Hydra ß-cat regulatory sequences in vivo, and open the path to reveal ß-catenin modulation in many other physiological contexts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hydra/embriología , Regeneración/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Hydra/genética , Hydra/metabolismo , Microscopía Fluorescente , Proteínas Wnt/metabolismo , beta Catenina/genética
10.
Nanotoxicology ; 11(2): 289-303, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28248594

RESUMEN

Water ecosystems represent main targets of unintentional contamination of nanomaterials, due to industrial waste or other anthropogenic activities. Nanoparticle insult to living organisms may occur in a sequential way, first by chemical interactions of the material with the target membrane, then by progressive internalisation and interaction with cellular structures and organelles. These events trigger a signal transduction, through which cells modulate molecular pathway in order to respond and survive to the external elicitation. Therefore, the analysis of the global changes of the molecular machinery, possibly induced in an organism upon exposure to a given nanomaterial, may provide unique clues for proper and exhaustive risk assessment. Here, we tested the impact of core/shell CdSe/ZnS QDs coated by a positively charged polymer on two aquatic species, the polyp Hydra vulgaris and the coral S. pistillata, representative of freshwater and sea habitats, respectively. By using reliable approaches based on animal behaviour and physiology together with a whole transcriptomic profiling, we determined several toxicity endpoints. Despite the difference in the efficiency of uptake, both species were severely affected by QD treatment, resulting in dramatic morphological damages and tissue bleaching. Global transcriptional changes were also detected in both organisms, but presenting different temporal dynamics, suggesting both common and divergent functional responses in the two sentinel organisms. Due to the striking conservation of structure and genomic organisation among animals throughout evolution, our expression profiling offers new clues to identify novel molecular markers and pathways for comparative transcriptomics of nanotoxicity.


Asunto(s)
Antozoos/efectos de los fármacos , Compuestos de Cadmio/toxicidad , Agua Dulce/química , Hydra/efectos de los fármacos , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Compuestos de Zinc/toxicidad , Animales , Antozoos/genética , Antozoos/metabolismo , Compuestos de Cadmio/química , Coloides , Endocitosis/efectos de los fármacos , Perfilación de la Expresión Génica , Hydra/genética , Hydra/metabolismo , Puntos Cuánticos/química , Compuestos de Selenio/química , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Compuestos de Zinc/química
11.
Sci Adv ; 3(1): e1601699, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28138549

RESUMEN

Current implant technology uses electrical signals at the electrode-neural interface. This rather invasive approach presents important issues in terms of performance, tolerability, and overall safety of the implants. Inducing light sensitivity in living organisms is an alternative method that provides groundbreaking opportunities in neuroscience. Optogenetics is a spectacular demonstration of this, yet is limited by the viral transfection of exogenous genetic material. We propose a nongenetic approach toward light control of biological functions in living animals. We show that nanoparticles based on poly(3-hexylthiophene) can be internalized in eyeless freshwater polyps and are fully biocompatible. Under light, the nanoparticles modify the light response of the animals, at two different levels: (i) they enhance the contraction events of the animal body, and (ii) they change the transcriptional activation of the opsin3-like gene. This suggests the establishment of a seamless and biomimetic interface between the living organism and the polymer nanoparticles that behave as light nanotransducers, coping with or amplifying the function of primitive photoreceptors.


Asunto(s)
Conducta Animal , Materiales Biomiméticos , Hydra/fisiología , Luz , Nanoestructuras , Semiconductores , Animales , Optogenética
12.
Nanomedicine (Lond) ; 10(14): 2167-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25959578

RESUMEN

AIM: To assess the cell response to magnetic nanoparticles under an alternating magnetic field by molecular quantification of heat responsive transcripts in two model systems. MATERIALS & METHODS: Melanoma cells and Hydra vulgaris treated with magnetic nanoparticles were subjected to an alternating magnetic field or to macroscopic heating. Effect to these treatments were assessed at animal, cellular and molecular levels. RESULTS: By comparing hsp70 expression following both treatments, thermotolerance pathways were found in both systems in absence of cell ablation or global temperature increment. CONCLUSION: Analysis of hsp70 transcriptional activation can be used as molecular thermometer to sense cells' response to magnetic hyperthermia. Similar responses were found in cells and Hydra, suggesting a general mechanism to the delivery of sublethal thermal doses.


Asunto(s)
Hipertermia Inducida/métodos , Magnetismo , Animales , Línea Celular Tumoral , Supervivencia Celular/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Hydra/fisiología , Ratones
13.
Nanomaterials (Basel) ; 5(3): 1331-1350, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-28347067

RESUMEN

The toxicological effects of pristine and chemically modified carbon nano-onions (CNOs) on the development of the freshwater polyp Hydra vulgaris were investigated in order to elucidate the ecotoxicological effects of CNOs. Chemical modifications of the CNOs were accomplished by surface functionalization with benzoic acid, pyridine and pyridinium moieties. thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy confirmed the covalent surface functionalization of CNOs. Hydra specimens were exposed to the carbon nanomaterials by prolonged incubation within their medium. Uptake was monitored by optical microscopy, and the toxicological effects of the CNOs on Hydra behavior, morphology, as well as the long-term effects on the development and reproductive capability were examined. The obtained data revealed the absence of adverse effects of CNOs (in the range 0.05-0.1 mg/L) in vivo at the whole animal level. Together with previously performed in vitro toxicological analyses, our findings indicate the biosafety of CNOs and the feasibility of employing them as materials for biomedical applications.

14.
Artículo en Inglés | MEDLINE | ID: mdl-25325055

RESUMEN

It is generally accepted that silica (SiO2) is not toxic. But the increasing use of silica nanoparticles (SiO2NPs) in many different industrial fields has prompted the careful investigation of their toxicity in biological systems. In this report, we describe the effects elicited by SiO2NPs on animal and cell physiology. Stable and monodisperse amorphous silica nanoparticles, 25 nM in diameter, were administered to living Hydra vulgaris (Cnidaria). The dose-related effects were defined by morphological and behavioral assays. The results revealed an all-or-nothing lethal toxicity with a rather high threshold (35 nM NPs) and a LT50 of 38 h. At sub lethal doses, the morphophysiological effects included: animal morphology alterations, paralysis of the gastric region, disorganization and depletion of tentacle specialized cells, increase of apoptotic and collapsed cells, and reduction of the epithelial cell proliferation rate. Transcriptome analysis (RNAseq) revealed 45 differentially expressed genes, mostly involved in stress response and cuticle renovation. Our results show that Hydra reacts to SiO2NPs, is able to rebalance the animal homeostasis up to a relatively high doses of SiO2NPs, and that the physiological modifications are transduced to gene expression modulation.

15.
PLoS One ; 9(4): e83003, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24709857

RESUMEN

The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.


Asunto(s)
Aminoácidos/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Cuerpo Estriado/metabolismo , Piperazinas/efectos adversos , Receptores de Serotonina/metabolismo , Maduración Sexual/efectos de los fármacos , Animales , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Química Encefálica/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Masculino , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Rev Neurosci ; 25(3): 383-400, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598832

RESUMEN

The serotonin receptor 7 (5-HT7-R) plays important functional roles in learning and memory, in regulation of mood and circadian rhythmicity. LP-211 is a new selective agonist, belonging to 1-arylpiperazine category. We report studies aimed to evaluate the modulatory effect of a subchronic regimen on behavioral/molecular parameters. At low dose [0.25 mg/kg intraperitoneally (i.p.)], LP-211 induced a 6-h anticipated wake up in adult mice (with no temporal landmark by constant light), acting as nonphotic stimulus for 'internal clock' resetting. In standard 12:12-h light/dark cycle, a subchronic effect (5-6 days at 0.25 mg/kg, once per day) was observed: delayed wake up, reduced peak of locomotor activity and no evidence for brain cellular proliferation after ex vivo analysis. Other studies in rats were aimed to investigate long-term effects of developmental LP-211 administration into adulthood. Subchronic LP-211 (0.125 mg/kg i.p. once per day during the prepuberal phase) reduced l-glutamate, N-methyl-d-aspartate receptor 1 and dopamine transporter within the ventral striatum. With LP-211 (0.25 mg/kg i.p. once per day during the postpuberal phase), clear reductions were observed in the immunoreactivity of serotonin transporter and dopaminergic D2 receptors in the ventral and dorsal striatum, respectively. Subchronic LP-211 in rats and mice appears to be a suitable tool for studying the role of 5-HT7-R in sleep disorders, emotional/motivational regulations, attentive processes and executive functions.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Receptores de Serotonina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ratones , Piperazinas/farmacología , Ratas , Receptores de Dopamina D2/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Factores de Tiempo
17.
ACS Nano ; 7(3): 2431-42, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23448235

RESUMEN

Gold nanoparticles have emerged as novel safe and biocompatible tools for manifold applications, including biological imaging, clinical diagnostics, and therapeutics. The understanding of the mechanisms governing their interaction with living systems may help the design and development of new platforms for nanomedicine. Here we characterized the dynamics and kinetics of the events underlying the interaction of gold nanoparticles with a living organism, from the first interaction nanoparticle/cell membrane, to the intracellular trafficking and final extracellular clearance. By treating a simple water invertebrate (the cnidarian Hydra polyp) with functionalized gold nanoparticles, multiple inward and outward routes were imaged by ultrastructural analyses, including exosomes as novel undescribed carriers to shuttle the nanoparticles in and out the cells. From the time course imaging a highly dynamic picture emerged in which nanoparticles are rapidly internalized (from 30 min onward), recruited into vacuoles/endosome (24 h onward), which then fuse, compact and sort out the internalized material either to storage vacuoles or to late-endosome/lysosomes, determining almost complete clearance within 48 h from challenging. Beside classical routes, new portals of entry/exit were captured, including exosome-like structures as novel undescribed nanoparticle shuttles. The conservation of the endocytic/secretory machinery through evolution extends the value of our finding to mammalian systems providing dynamics and kinetics clues to take into account when designing nanomaterials to interface with biological entities.


Asunto(s)
Hydra/metabolismo , Nanopartículas del Metal , Animales , Transporte Biológico Activo , Endosomas/metabolismo , Endosomas/ultraestructura , Exocitosis , Exosomas/metabolismo , Exosomas/ultraestructura , Genes myc , Oro , Hydra/genética , Hydra/ultraestructura , Cinética , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Nanoconjugados/química , Nanoconjugados/ultraestructura , Nanotecnología , Polietilenglicoles/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura
18.
PLoS One ; 7(1): e30660, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292012

RESUMEN

Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.


Asunto(s)
Proliferación Celular , Genes myc , Hydra/genética , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes myc/efectos de los fármacos , Genes myc/genética , Genes myc/fisiología , Hydra/crecimiento & desarrollo , Hydra/metabolismo , Hydra/fisiología , Modelos Biológicos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/farmacología , Regeneración/efectos de los fármacos , Regeneración/genética , Regeneración/fisiología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tiazoles/farmacología
19.
Biomaterials ; 33(7): 1991-2000, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22169823

RESUMEN

A systematic and thorough quantitative analysis of the in vivo effects of inorganic nanoparticles is extremely important for the design of functional nanomaterials for diagnostic and therapeutic applications, better understanding of their non-specificity toward tissues and cell types, and for assessments of their toxicity. This study was undertaken to examine the impact of CdTe quantum dots (QDs) on an invertebrate freshwater model organism, Hydra vulgaris, for assessment of long term toxicity effects. The continuous exposure of living polyps to sub-lethal doses of QDs caused time and dose dependent morphological damages more severe than Cd(2+) ions at the same concentrations, impaired both reproductive and regenerative capability, activated biochemical and molecular responses. Of remarkable interest, low QD doses, apparently not effective, caused early changes in the expression of general stress responsive and apoptotic genes. The occurrence of subtle genetic variations, in the absence of morphological damages, indicates the importance of genotoxicity studies for nanoparticle risk assessment. The versatility in morphological, cellular, biochemical and molecular responses renders Hydra a perfect model system for high-throughput screening of toxicological and ecotoxicological impact of nanomaterials on human and environmental health.


Asunto(s)
Compuestos de Cadmio/toxicidad , Hydra/efectos de los fármacos , Puntos Cuánticos , Telurio/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Hydra/citología , Hydra/genética , Hydra/crecimiento & desarrollo , Ensayo de Materiales , Nanopartículas/toxicidad , Reproducción/efectos de los fármacos , Tasa de Supervivencia
20.
Nanoscale ; 3(12): 5110-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22037807

RESUMEN

The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Dopaminérgicos/farmacología , Dopamina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Puntos Cuánticos , Cadmio/química , Compuestos de Cadmio/química , Línea Celular Tumoral , Dopamina/química , Dopaminérgicos/química , Colorantes Fluorescentes/química , Transportador de Glucosa de Tipo 1/agonistas , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Polietilenglicoles/química , Selenio/química , Coloración y Etiquetado/métodos , Sulfuros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...