Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13034, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844476

RESUMEN

The risk of developing age-related macular degeneration (AMD) is influenced by genetic background. In 2016, the International AMD Genomics Consortium (IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score (PRS) from these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish (AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study (GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Our discovery set recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary-statistics excluding our study and developed PRSs via clumping/thresholding or LDpred2. In our discovery set, 31/34 loci reported by IAMDGC were AMD-associated (P < 0.05). Of those, all effects were directionally consistent with IAMDGC and 11 loci had a P-value under Bonferroni-corrected threshold (0.05/34 = 0.0015). At a 5 × 10-5 threshold, we discovered four suggestive associations in FAM189A1, IGDCC4, C7orf50, and CNTNAP4. Only the FAM189A1 variant was AMD-associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS + covariates had an AUC of 0.82 (95% CI 0.79-0.85) and performed better than covariates-only model (P = 5.1 × 10-9). Therefore, previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Degeneración Macular , Polimorfismo de Nucleótido Simple , Humanos , Degeneración Macular/genética , Degeneración Macular/epidemiología , Israel/epidemiología , Femenino , Masculino , Anciano , Factores de Riesgo , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano de 80 o más Años , Herencia Multifactorial/genética , Judíos/genética , Genotipo
2.
J Clin Med ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38892804

RESUMEN

Background: To design a novel anomaly detection and localization approach using artificial intelligence methods using optical coherence tomography (OCT) scans for retinal diseases. Methods: High-resolution OCT scans from the publicly available Kaggle dataset and a local dataset were used by four state-of-the-art self-supervised frameworks. The backbone model of all the frameworks was a pre-trained convolutional neural network (CNN), which enabled the extraction of meaningful features from OCT images. Anomalous images included choroidal neovascularization (CNV), diabetic macular edema (DME), and the presence of drusen. Anomaly detectors were evaluated by commonly accepted performance metrics, including area under the receiver operating characteristic curve, F1 score, and accuracy. Results: A total of 25,315 high-resolution retinal OCT slabs were used for training. Test and validation sets consisted of 968 and 4000 slabs, respectively. The best performing across all anomaly detectors had an area under the receiver operating characteristic of 0.99. All frameworks were shown to achieve high performance and generalize well for the different retinal diseases. Heat maps were generated to visualize the quality of the frameworks' ability to localize anomalous areas of the image. Conclusions: This study shows that with the use of pre-trained feature extractors, the frameworks tested can generalize to the domain of retinal OCT scans and achieve high image-level ROC-AUC scores. The localization results of these frameworks are promising and successfully capture areas that indicate the presence of retinal pathology. Moreover, such frameworks have the potential to uncover new biomarkers that are difficult for the human eye to detect. Frameworks for anomaly detection and localization can potentially be integrated into clinical decision support and automatic screening systems that will aid ophthalmologists in patient diagnosis, follow-up, and treatment design. This work establishes a solid basis for further development of automated anomaly detection frameworks for clinical use.

3.
Graefes Arch Clin Exp Ophthalmol ; 262(7): 2145-2151, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38416238

RESUMEN

OBJECTIVE: To develop an automated method for efficiently downloading a large number of optical coherence tomography (OCT) scans obtained using the Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) platform. METHODS: The electronic medical records and OCT scans were extracted for all patients with age-related macular degeneration treated at the Hadassah University Hospital Retina Clinic between 2010 and 2021. A macro was created using Visual Basic for Applications (VBA) and Microsoft Excel to automate the export process and anonymize the OCT scans in accordance with hospital policy. OCT scans were extracted as proprietary Heidelberg E2E files. RESULTS: The VBA macro was used to export a total of 94,789 E2E files from 2807 patient records, with an average processing time of 4.32 min per volume scan (SD: 3.57 min). The entire export process took a total of approximately 202 h to complete over a period of 24 days. In a smaller sample, using the macro to download the scans was significantly faster than manually downloading the scans, averaging 3.88 vs. 11.08 min/file, respectively (t = 8.59, p < 0.001). Finally, we found that exporting the files during both off-clinic and working hours resulted in significantly faster processing times compared to exporting the files solely during working hours (t = 5.77, p < 0.001). CONCLUSIONS: This study demonstrates the feasibility of using VBA and Excel to automate the process for bulk downloading data from a specific medical imaging platform. The specific steps and techniques will likely vary depending on the software used and hospital constraints and should be determined for each application.


Asunto(s)
Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Humanos , Retina/diagnóstico por imagen , Degeneración Macular/diagnóstico , Estudios Retrospectivos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA