Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Div ; 19(1): 14, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643120

RESUMEN

BACKGROUND: Cancer radiation treatments have seen substantial advancements, yet the biomolecular mechanisms underlying cancer cell radioresistance continue to elude full understanding. The effectiveness of radiation on cancer is hindered by various factors, such as oxygen concentrations within tumors, cells' ability to repair DNA damage and metabolic changes. Moreover, the initial and radiation-induced cell cycle profiles can significantly influence radiotherapy responses as radiation sensitivity fluctuates across different cell cycle stages. Given this evidence and our prior studies establishing a correlation between cancer radiation resistance and an increased number of cytoplasmic Lipid Droplets (LDs), we investigated if LD accumulation was modulated along the cell cycle and if this correlated with differential radioresistance in lung and bladder cell lines. RESULTS: Our findings identified the S phase as the most radioresistant cell cycle phase being characterized by an increase in LDs. Analysis of the expression of perilipin genes (a family of proteins involved in the LD structure and functions) throughout the cell cycle also uncovered a unique gene cell cycle pattern. CONCLUSIONS: In summary, although these results require further molecular studies about the mechanisms of radioresistance, the findings presented here are the first evidence that LD accumulation could participate in cancer cells' ability to better survive X-Ray radiation when cells are in the S phase. LDs can represent new players in the radioresistance processes associated with cancer metabolism. This could open new therapeutic avenues in which the use of LD-interfering drugs might enhance cancer sensitivity to radiation.

2.
Radiat Oncol ; 18(1): 81, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173741

RESUMEN

BACKGROUND: Solid tumors are often riddled with hypoxic areas, which develops as a result of high proliferation. Cancer cells willingly adapt and thrive in hypoxia by activating complex changes which contributes to survival and enhanced resistance to treatments, such as photon radiation. Photon radiation primarily relies on oxygen for the production of reactive oxygen species to induce DNA damage. The present in-vitro study aimed at investigating the biochemical responses of hypoxic non-small cell lung cancer (NSCLC) cells, particularly the effects on the DNA damage repair systems contributing to more radioresistant phenotypes and their pro- and anti-oxidant potential, within the first 24 h post-IR. METHODS: NSCLC cell lines (H460, A549, Calu-1) were irradiated using varying X-ray doses under normoxia (21% O2) and hypoxia (0.1% O2). The overall cell survival was assessed by clonogenic assays. The extent of irradiation (IR)-induced DNA damage was evaluated by analyzing γ-H2AX foci induction and the altered expression of repair genes involved in non-homologous end joining and homologous recombination pathways. Moreover, cell-altered responses were investigated, including the nuclear and cytosolic hydrogen peroxide (H2O2) production, as well as the associated anti-oxidant potential, in particular some components related to the glutathione system. RESULTS: Analysis of clonogenic survival revealed an enhanced radioresistance of the hypoxic NSCLC cells associated with reduced DNA damage and a downregulation of DNA repair genes. Moreover, nuclear H2O2 levels were IR-induced in a dose-dependent manner only under normoxia, and directly correlated with the DNA double-strand breaks. However, the observed nuclear H2O2 reduction in hypoxia appeared to be unaffected by IR, thus highlighting a possible reason for the enhanced radioresistance of the hypoxic NSCLC cells. The cellular antioxidant capacity was upregulated by IR in both oxygen conditions most likely helping to counteract the radiation effect on the cytosolic H2O2. CONCLUSIONS: In conclusion, our data provide insight into the adaptive behavior of radiation-resistant hypoxic NSCLC cells, in particular their DNA repair and oxidative stress responses, which could contribute to lower DNA damage and higher cell survival rates following X-ray exposure. These findings may therefore help to identify potential targets for improving cancer treatment outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Oxígeno , Rayos X , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Tolerancia a Radiación/genética , Línea Celular Tumoral , Hipoxia , Reparación del ADN , Apoptosis/efectos de la radiación
3.
Ann Biomed Eng ; 51(8): 1859-1871, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093401

RESUMEN

Clonogenic assays are routinely used to evaluate the response of cancer cells to external radiation fields, assess their radioresistance and radiosensitivity, estimate the performance of radiotherapy. However, classic clonogenic tests focus on the number of colonies forming on a substrate upon exposure to ionizing radiation, and disregard other important characteristics of cells such their ability to generate structures with a certain shape. The radioresistance and radiosensitivity of cancer cells may depend less on the number of cells in a colony and more on the way cells interact to form complex networks. In this study, we have examined whether the topology of 2D cancer-cell graphs is influenced by ionizing radiation. We subjected different cancer cell lines, i.e. H4 epithelial neuroglioma cells, H460 lung cancer cells, PC3 bone metastasis of grade IV of prostate cancer and T24 urinary bladder cancer cells, cultured on planar surfaces, to increasing photon radiation levels up to 6 Gy. Fluorescence images of samples were then processed to determine the topological parameters of the cell-graphs developing over time. We found that the larger the dose, the less uniform the distribution of cells on the substrate-evidenced by high values of small-world coefficient (cc), high values of clustering coefficient (cc), and small values of characteristic path length (cpl). For all considered cell lines, [Formula: see text] for doses higher or equal to 4 Gy, while the sensitivity to the dose varied for different cell lines: T24 cells seem more distinctly affected by the radiation, followed by the H4, H460 and PC3 cells. Results of the work reinforce the view that the characteristics of cancer cells and their response to radiotherapy can be determined by examining their collective behavior-encoded in a few topological parameters-as an alternative to classical clonogenic assays.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Próstata , Masculino , Humanos , Tolerancia a Radiación/fisiología , Neoplasias de la Próstata/patología , Células Epiteliales , Supervivencia Celular
4.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551069

RESUMEN

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light-electron microscopy and by correlative Raman imaging-scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an energy-dispersive X-ray spectroscopy module. This procedure correlated cellular morphology, chemical properties, and spatial distribution from the same region of interest, and in this work, we presented the application of CREL for the analysis of LDs within patient-derived melanoma CSCs (MCSCs).


Asunto(s)
Gotas Lipídicas , Melanoma , Humanos , Electrones , Microscopía Electrónica de Rastreo , Espectrometría Raman/métodos , Células Madre Neoplásicas
5.
Sci Rep ; 12(1): 12980, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902618

RESUMEN

Radiation therapy (RT) is now considered to be a main component of cancer therapy, alongside surgery, chemotherapy and monoclonal antibody-based immunotherapy. In RT, cancer tissues are exposed to ionizing radiation causing the death of malignant cells and favoring cancer regression. However, the efficiency of RT may be hampered by cell-radioresistance (RR)-that is a feature of tumor cells of withstanding RT. To improve the RT performance, it is decisive developing methods that can help to quantify cell sensitivity to radiation. In acknowledgment of the fact that none of the existing methods to assess RR are based on cell graphs topology, in this work we have examined how 2D cell networks, within a single colony, from different human lung cancer lines (H460, A549 and Calu-1) behave in response to doses of ionizing radiation ranging from 0 to 8 Gy. We measured the structure of resulting cell-graphs using well-assessed networks-analysis metrics, such as the clustering coefficient (cc), the characteristic path length (cpl), and the small world coefficient (SW). Findings of the work illustrate that the clustering characteristics of cell-networks show a marked sensitivity to the dose and cell line. Higher-than-one values of SW coefficient, clue of a discontinuous and inhomogeneous cell spatial layout, are associated to elevated levels of radiation and to a lower radio-resistance of the treated cell line. Results of the work suggest that topology could be used as a quantitative parameter to assess the cell radio-resistance and measure the performance of cancer radiotherapy.


Asunto(s)
Neoplasias Pulmonares , Tolerancia a Radiación , Línea Celular Tumoral , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Radiación Ionizante
6.
Cells ; 11(10)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35626736

RESUMEN

The necessity to improve in vitro cell screening assays is becoming ever more important. Pharmaceutical companies, research laboratories and hospitals require technologies that help to speed up conventional screening and therapeutic procedures to produce more data in a short time in a realistic and reliable manner. The design of new solutions for test biomaterials and active molecules is one of the urgent problems of preclinical screening and the limited correlation between in vitro and in vivo data remains one of the major issues. The establishment of the most suitable in vitro model provides reduction in times, costs and, last but not least, in the number of animal experiments as recommended by the 3Rs (replace, reduce, refine) ethical guiding principles for testing involving animals. Although two-dimensional (2D) traditional cell screening assays are generally cheap and practical to manage, they have strong limitations, as cells, within the transition from the three-dimensional (3D) in vivo to the 2D in vitro growth conditions, do not properly mimic the real morphologies and physiology of their native tissues. In the study of human pathologies, especially, animal experiments provide data closer to what happens in the target organ or apparatus, but they imply slow and costly procedures and they generally do not fully accomplish the 3Rs recommendations, i.e., the amount of laboratory animals and the stress that they undergo must be minimized. Microfluidic devices seem to offer different advantages in relation to the mentioned issues. This review aims to describe the critical issues connected with the conventional cells culture and screening procedures, showing what happens in the in vivo physiological micro and nano environment also from a physical point of view. During the discussion, some microfluidic tools and their components are described to explain how these devices can circumvent the actual limitations described in the introduction.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Animales , Materiales Biocompatibles , Técnicas de Cultivo de Célula/métodos , Microfluídica/métodos
7.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563465

RESUMEN

We propose a novel mechanism by which cancer cells can modulate the oxygen concentration within the nucleus, potentially creating low nuclear oxygen conditions without the need of an hypoxic micro-environment and suited for allowing cancer cells to resist chemo- and radio-therapy. The cells ability to alter intra-cellular oxygen conditions depends on the amount of cholesterol present within the cellular membranes, where high levels of cholesterol can yield rigid membranes that slow oxygen diffusion. The proposed mechanism centers on the competition between (1) the diffusion of oxygen within the cell and across cellular membranes that replenishes any consumed oxygen and (2) the consumption of oxygen in the mitochondria, peroxisomes, endoplasmic reticulum (ER), etc. The novelty of our work centers around the assumption that the cholesterol content of a membrane can affect the oxygen diffusion across the membrane, reducing the cell ability to replenish the oxygen consumed within the cell. For these conditions, the effective diffusion rate of oxygen becomes of the same order as the oxygen consumption rate, allowing the cell to reduce the oxygen concentration of the nucleus, with implications to the Warburg Effect. The cellular and nucleus oxygen content is indirectly evaluated experimentally for bladder (T24) cancer cells and during the cell cycle, where the cells are initially synchronized using hydroxeaurea (HU) at the late G1-phase/early S-phase. The analysis of cellular and nucleus oxygen concentration during cell cycle is performed via (i) RT-qPCR gene analysis of hypoxia inducible transcription factors (HIF) and prolyl hydroxylases (PHD) and (ii) radiation clonogenic assay every 2 h, after release from synchronization. The HIF/PHD genes allowed us to correlate cellular oxygen with oxygen concentration in the nucleus that is obtained from the cells radiation response, where the amount DNA damage due to radiation is directly related to the amount of oxygen present in the nucleus. We demonstrate that during the S-phase cells can become hypoxic in the late S-phase/early G2-phase and therefore the radiation resistance increases 2- to 3-fold.


Asunto(s)
Núcleo Celular , Colesterol , Hipoxia , Hipoxia de la Célula/fisiología , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Núcleo Celular/metabolismo , Colesterol/metabolismo , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/metabolismo , Prolil Hidroxilasas/metabolismo , Tolerancia a Radiación/fisiología , Fase S
8.
Elife ; 102021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499029

RESUMEN

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma, and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of lipid droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1). In fact, breast and lung cancer cells silenced for the FTH1 gene showed a reduction in the LD numbers and, by consequence, became radiosensitive. FTH1 overexpression as well as iron-chelating treatment by Deferoxamine were able to restore the LD amount and RR. Overall, these results provide evidence of a novel mechanism behind RR in which LDs and FTH1 are tightly connected to each other, a synergistic effect that might be worth deeply investigating in order to make cancer cells more radiosensitive and improve the efficacy of radiation treatments.


Asunto(s)
Ferritinas/metabolismo , Gotas Lipídicas/efectos de la radiación , Neoplasias/metabolismo , Neoplasias/radioterapia , Oxidorreductasas/metabolismo , Línea Celular Tumoral , Ferritinas/genética , Humanos , Gotas Lipídicas/metabolismo , Neoplasias/genética , Oxidorreductasas/genética , Tolerancia a Radiación , Rayos X
9.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576263

RESUMEN

Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy. Recently, lipid droplets (LDs) have been proposed as functional markers of cancer stem cells, also being involved in increased cell tumorigenicity. LD biogenesis is a multistep process requiring various enzymes, including Diacylglycerol acyltransferase 2 (DGAT2). In this context, we evaluated the effect of PF-06424439, a selective DGAT2 inhibitor, on MCF7 breast cancer cells exposed to X-rays. Our results demonstrated that 72 h of PF-06424439 treatment reduced LD content and inhibited cell migration, without affecting cell proliferation. Interestingly, PF-06424439 pre-treatment followed by radiation was able to enhance radiosensitivity of MCF7 cells. In addition, the combined treatment negatively interfered with lipid metabolism-related genes, as well as with EMT gene expression, and modulated the expression of typical markers associated with the CSC-like phenotype. These findings suggest that PF-06424439 pre-treatment coupled to X-ray exposure might potentiate breast cancer cell radiosensitivity and potentially improve the radiotherapy effectiveness.


Asunto(s)
Neoplasias de la Mama/radioterapia , Diacilglicerol O-Acetiltransferasa/metabolismo , Gotas Lipídicas/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Relación Dosis-Respuesta en la Radiación , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Femenino , Regulación de la Expresión Génica , Humanos , Imidazoles/farmacología , Metabolismo de los Lípidos/fisiología , Lípidos , Células MCF-7 , Fenotipo , Piridinas/farmacología , Especies Reactivas de Oxígeno , Rayos X
10.
Front Genet ; 12: 597635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995470

RESUMEN

Whilst the impact of hypoxia and ionizing radiations on gene expression is well-understood, the interplay of these two effects is not. To better investigate this aspect at the gene level human bladder, brain, lung and prostate cancer cell lines were irradiated with photons (6 Gy, 6 MV LINAC) in hypoxic and normoxic conditions and prepared for the whole genome analysis at 72 h post-irradiation. The analysis was performed on the obtained 20,000 genes per cell line using PCA and hierarchical cluster algorithms to extract the most dominant genes altered by radiation and hypoxia. With the help of the introduced novel radiation-in-hypoxia and oxygen-impact profiles, it was possible to overcome cell line specific gene regulation patterns. Based on that, 37 genes were found to be consistently regulated over all studied cell lines. All DNA-repair related genes were down-regulated after irradiation, independently of the oxygen state. Cell cycle-dependent genes showed up-regulation consistent with an observed change in cell population in the S and G2/M phases of the cell cycle after irradiation. Genes behaving oppositely in their regulation behavior when changing the oxygen concentration and being irradiated, were immunoresponse and inflammation related genes. The novel analysis method, and by consequence, the results presented here have shown how it is important to consider the two effects together (oxygen and radiation) when analyzing gene response upon cancer radiation treatment. This approach might help to unrevel new gene patterns responsible for cancer radioresistance in patients.

11.
Genes Dis ; 7(4): 620-635, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33335962

RESUMEN

Lipid Droplets (LDs) are emerging as crucial players in colon cancer development and maintenance. Their expression has been associated with high tumorigenicity in Cancer Stem Cells (CSCs), so that they have been proposed as a new functional marker in Colorectal Cancer Stem Cells (CR-CSCs). They are also indirectly involved in the modulation of the tumor microenvironment through the production of pro-inflammatory molecules. There is growing evidence that a possible connection between metabolic alterations and malignant transformation exists, although the effects of nutrients, primarily glucose, on the CSC behavior are still mostly unexplored. Glucose is an essential fuel for cancer cells, and the connections with LDs in the healthy and CSC populations merit to be more deeply investigated. Here, we showed that a high glucose concentration activated the PI3K/AKT pathway and increased the expression of CD133 and CD44v6 CSC markers. Additionally, glucose was responsible for the increased amount of Reactive Oxygen Species (ROS) and LDs in both healthy and CR-CSC samples. We also investigated the gene modulations following the HG treatment and found out that the healthy cell gene profile was the most affected. Lastly, Atorvastatin, a lipid-lowering drug, induced the highest mortality on CR-CSCs without affecting the healthy counterpart.

12.
ACS Omega ; 5(47): 30436-30443, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283091

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by abnormal plasma cell proliferation within the bone marrow which leads to progressive bone marrow failure, skeletal osteolytic lesions, and renal insufficiency, thus severely affecting the quality of life. MM is always preceded by monoclonal gammopathy of uncertain significance (MGUS), which progresses to asymptomatic-MM (aMM) or symptomatic-MM (sMM) at a rate of 1% per year. Despite impressive progress in the therapy of the disease, MM remains incurable. Based on these premises, the identification of biomarkers of MGUS progression to MM is a crucial issue in disease management. In this regard, exosomes (EXs) and their precious biomolecular cargo could play a pivotal role in MM detection, stratification, and follow-up. Raman spectroscopy, a label- and manipulation-free technique, and its enhanced version, surface-enhanced Raman spectroscopy (SERS), have been used for characterizing MGUS, aMM, and sMM patient-derived EXs. Here, we have demonstrated the capability of Raman spectroscopy for discriminating EXs along the progression from MGUS to aMM and sMM, thus providing useful clinical indications for patient care. The used SERS devices, based on random nanostructures, have shown good potential in terms of sensitivity, but further developments are needed for achieving reproducible and quantitative SERS results.

13.
Front Mol Biosci ; 7: 578964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134318

RESUMEN

Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.

14.
Pharmaceutics ; 12(5)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466284

RESUMEN

The adhesion, proliferation, and migration of cells over nanomaterials is regulated by a cascade of biochemical signals that originate at the interface of a cell with a substrate and propagate through the cytoplasm to the nucleus. The topography of the substrate plays a major role in this process. Cell adhesion molecules (CAMs) have a characteristic size of some nanometers and a range of action of some tens of nanometers. Controlling details of a surface at the nanoscale-the same dimensional over which CAMs operate-offers ways to govern the behavior of cells and create organoids or tissues with heretofore unattainable precision. Here, using electrochemical procedures, we generated mesoporous silicon surfaces with different values of pore size (PS≈11 nm and PS≈21 nm), roughness (Ra≈7 nm and Ra≈13 nm), and fractal dimension (Df≈2.48 and Df≈2.15). Using electroless deposition, we deposited over these substrates thin layers of gold nanoparticles. Resulting devices feature (i) nanoscale details for the stimulation and control of cell assembly, (ii) arrays of pores for drug loading/release, (iii) layers of nanostructured gold for the enhancement of the electromagnetic signal in Raman spectroscopy (SERS). We then used these devices as cell culturing substrates. Upon loading with the anti-tumor drug PtCl (O,O'-acac)(DMSO) we examined the rate of adhesion and growth of breast cancer MCF-7 cells under the coincidental effects of surface geometry and drug release. Using confocal imaging and SERS spectroscopy we determined the relative importance of nano-topography and delivery of therapeutics on cell growth-and how an unbalance between these competing agents can accelerate the development of tumor cells.

15.
RSC Adv ; 10(22): 12699-12710, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492123

RESUMEN

Gliomas are the most common type of primary brain tumors, presenting high mortality and recurrence rates that highlight the need for the development of more efficient therapies. In that context, we investigated iron(iii) (FeL) and copper(ii) (CuL) complexes containing the tetradentate ligand 2-{[(3-chloro-2-hydroxy-propyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (L) as potential antimetastatic compounds in glioma cells. These complexes were designed to act as mimetics of antioxidant metalloenzymes (catalases and superoxide dismutase) and thus interfere with the production of reactive oxygen species (ROS), important signaling molecules that have been linked to the induction of Epithelial-Mesenchymal Transition (EMT) in cancer cells, a process associated with cancer invasion and aggressiveness. The results obtained have revealed that, in vitro, both compounds act as superoxide dismutase or catalase mimetics, and this translated in glioma cells into a decrease in ROS levels in FeL-treated cells. In addition, both complexes were found to inhibit the migration of monolayer-grown H4 cells and lead to decreased expression of EMT markers. More importantly, this behavior was recapitulated in 3D spheroids models, where CuL in particular was found to completely inhibit the invasion ability of glioma cells, with or without cellular irradiation with X-rays, which is suggestive of these compounds' potential to be used in combination with radiotherapy. Overall, the results herein obtained describe the novel use of these complexes as agents that are able to interfere with regulation of EMT and the invasive behavior of glioma cells, an application that deserves to be further explored.

16.
Nanomicro Lett ; 9(1): 1, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30460298

RESUMEN

Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

17.
Opt Express ; 24(2): A180-90, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832572

RESUMEN

In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562).


Asunto(s)
Dimerización , Técnicas Analíticas Microfluídicas/instrumentación , Nanopartículas/química , Análisis de la Célula Individual/instrumentación , Espectrometría Raman/instrumentación , Humanos , Células K562 , Fenómenos Ópticos
18.
Sci Adv ; 1(7): e1500734, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26601243

RESUMEN

The structure of DNA was determined in 1953 by x-ray fiber diffraction. Several attempts have been made to obtain a direct image of DNA with alternative techniques. The direct image is intended to allow a quantitative evaluation of all relevant characteristic lengths present in a molecule. A direct image of DNA, which is different from diffraction in the reciprocal space, is difficult to obtain for two main reasons: the intrinsic very low contrast of the elements that form the molecule and the difficulty of preparing the sample while preserving its pristine shape and size. We show that through a preparation procedure compatible with the DNA physiological conditions, a direct image of a single suspended DNA molecule can be obtained. In the image, all relevant lengths of A-form DNA are measurable. A high-resolution transmission electron microscope that operates at 80 keV with an ultimate resolution of 1.5 Å was used for this experiment. Direct imaging of a single molecule can be used as a method to address biological problems that require knowledge at the single-molecule level, given that the average information obtained by x-ray diffraction of crystals or fibers is not sufficient for detailed structure determination, or when crystals cannot be obtained from biological molecules or are not sufficient in understanding multiple protein configurations.

19.
Oncotarget ; 6(25): 21016-28, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26023799

RESUMEN

We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells.Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation. Cells passed more than 300 population doublings, and two out of three tested clones gave rise to tumors in experimental animals. Transformed cells showed anchorage-independent growth and loss of contact inhibition; they expressed epithelial markers, such as E-cadherin and ß-catenin. Transformed cells showed increased telomerase activity, disturbance of the cell cycle, and chromosomal instability. Taken together, our data suggest that S18-2 is a newly identified oncoprotein that may be involved in cancerogenesis.


Asunto(s)
Transformación Celular Neoplásica , Fibroblastos/metabolismo , Proteínas Ribosómicas/metabolismo , Piel/metabolismo , Animales , Carcinogénesis , Proliferación Celular , Inestabilidad Cromosómica , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cariotipificación , Lípidos/química , Ratones , Ratones SCID , Mitocondrias/metabolismo , Oxidación-Reducción , Oxígeno/química , Ratas , Telomerasa/metabolismo
20.
Stem Cells ; 33(1): 35-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25186497

RESUMEN

The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs.


Asunto(s)
Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Espectrometría Raman/métodos , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Humanos , Gotas Lipídicas , Ratones , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...