Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834397

RESUMEN

BACKGROUND: Theranostics, a novel concept in medicine, is based on the use of an agent for simultaneous diagnosis and treatment. Nanomaterials provide promising novel approaches to theranostics. Carbon Dots have been shown to exhibit anti-tumoral properties in various cancer models. The aim of the present study is to develop gadolinium, Fe3+, and Mn2+-doped N-hydroxyphthalimide-derived Carbon Dots. The resulted doped Carbon Dots should preserve the anti-tumoral properties while gaining magnetic resonance imaging properties. METHODS: Normal and cancer cell lines have been treated with doped Carbon Dots, and the cell viability has been measured. The doped Carbon Dots that exhibited the most prominent anti-tumoral effect accompanied by the lowest toxicity have been further in vivo tested. Magnetic resonance imaging evaluates both in vitro and in vivo the possibility of using doped Carbon Dots as a contrast agent. RESULTS: According to the results obtained from both the in vitro and in vivo experimental models used in our study, Mn2+-doped Carbon Dots (Mn-CDs-NHF) exhibit anti-tumoral properties, do not significantly impair the cell viability of normal cells, and reduce lung metastasis and the volume of mammary primary tumors while allowing magnetic resonance imaging. CONCLUSIONS: Our findings prove that Mn-CDs-NHF can be used as theranostics agents in pre-clinical models.

2.
Curr Issues Mol Biol ; 43(1): 264-275, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199634

RESUMEN

(1) Background: Triple negative breast cancer (TNBC) is a highly aggressive tumor, associated with high rates of early distant recurrence and short survival times, and treatment may require surgery, and thus anesthesia. The effects of anesthetic drugs on cancer progression are under scrutiny, but published data are controversial, and the involved mechanisms unclear. Anesthetic agents have been shown to modulate several molecular cascades, including PI3K/AKT/mTOR. AKT isoforms are frequently amplified in various malignant tumors and associated with malignant cell survival, proliferation and invasion. Their activation is often observed in human cancers and is associated with decreased survival rate. Certain anesthetics are known to affect hypoxia cell signaling mechanisms by upregulating hypoxia-inducible factors (HIFs). (2) Methods: MCF-10A and MDA-MB 231 cells were cultivated and CellTiter-Blue® Cell Viability assay, 2D and 3D matrigel assay, immunofluorescence assays and gene expressions assay were performed after exposure to different sevoflurane concentrations. (3) Results: Sevoflurane exposure of TNBC cells results in morphological and behavioral changes. Sevoflurane differently influences the AKT isoforms expression in a time-dependent manner, with an important early AKT3 upregulation. The most significant effects occur at 72 h after 2 mM sevoflurane treatment and consist in increased viability, proliferation and aggressiveness and increased vimentin and HIF expression. (4) Conclusions: Sevoflurane exposure during surgery may contribute to cancer recurrence via AKT3 induced epithelial-mesenchymal transition (EMT) and by all three AKT isoforms enhanced cancer cell survival and proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sevoflurano/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Anestésicos por Inhalación/farmacología , Técnicas de Cultivo Tridimensional de Células/métodos , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Filamentos Intermedios/efectos de los fármacos , Filamentos Intermedios/metabolismo , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
3.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918086

RESUMEN

BACKGROUND: In the latest years, there has been an increased interest in nanomaterials that may provide promising novel approaches to disease diagnostics and therapeutics. Our previous results demonstrated that Carbon-dots prepared from N-hydroxyphthalimide (CD-NHF) exhibited anti-tumoral activity on several cancer cell lines such as MDA-MB-231, A375, A549, and RPMI8226, while U87 glioma tumor cells were unaffected. Gliomas represent one of the most common types of human primary brain tumors and are responsible for the majority of deaths. In the present in vitro study, we expand our previous investigation on CD-NHF in the U87 cell line by adding different drug combinations. METHODS: Cell viability, migration, invasion, and immunofluorescent staining of key molecular pathways have been assessed after various treatments with CD-NHF and/or K252A and AKTVIII inhibitors in the U87 cell line. RESULTS: Association of an inhibitor strongly potentiates the anti-tumoral properties of CD-NHF identified by significant impairment of migration, invasion, and expression levels of phosphorylated Akt, p70S6Kinase, or by decreasing expression levels of Bcl-2, IL-6, STAT3, and Slug. CONCLUSIONS: Using simultaneously reduced doses of both CD-NHF and an inhibitor in order to reduce side effects, the viability and invasiveness of U87 glioma cells were significantly impaired.


Asunto(s)
Antineoplásicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ftalimidas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Ftalimidas/química
4.
Cancers (Basel) ; 12(3)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183322

RESUMEN

Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC). We hypothesized that high oxygen exposure, even of short duration, may have long-term effects on cancer growth. Considering that hyperoxic exposure results in reactive oxygen species (ROS) formation, increased oxidative stress and increased Brain-Derived Neurotrophic Factor (BDNF) expression, BDNF may mediate hyperoxia effects offering cancer cells a survival advantage by increased angiogenesis and epithelial mesenchymal transition (EMT). Human breast epithelial MCF10A, human MDA-MB-231 and murine 4T1 TNBC were investigated in 2D in vitro system. Cells were exposed to normoxia or hyperoxia (40%, 60%, 80% O2) for 6 h. We evaluated ROS levels, cell viability and the expression of BDNF, HIF-1α, VEGF-R2, Vimentin and E-Cadherin by immunofluorescence. The in vivo model consisted of 4T1 inoculation in Balb/c mice and tumor resection 2 weeks after and 6 h exposure to normoxia or hyperoxia (40%, 80% O2). We measured lung metastases and the same molecular markers, immediately and 4 weeks after surgery. The in vitro study showed that short-term hyperoxia exposure (80% O2) of TNBC cells increases ROS, increases BDNF expression and that promotes EMT and angiogenesis. The in vivo data indicates that perioperative hyperoxia enhances metastatic disease and this effect could be BDNF mediated.

5.
Tissue Eng Part A ; 20(19-20): 2590-603, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24957363

RESUMEN

Akt kinase is a central signal transduction node that integrates extracellular cues that regulate cell migratory, proliferative, and morphological functions during angiogenesis. However, how Akt activity is modulated and contributes to subsequent vessel maturation is unclear. In this study we investigated the role of Akt1 in vessel maturation using human dermal microvascular endothelial cells (HDMVECs) expressing constitutively active and hemiphosphorylated Akt1 epi-alleles with graded kinase activity. HDMVECs expressing Akt1 epi-alleles were analyzed in vivo in a tissue engineering setting using a model of angiogenesis comprising cell-seeded poly-L-lactic acid scaffolds implanted subcutaneously into NOD/SCID murine hosts. The resultant intraimplant microvasculature was quantified for vascular parameters, including vessel diameter, perfusion, vascular density, and pericyte coverage. We found that constitutive Akt1 kinase activity in implanted HDMVECs correlated with loss of neovasculature function. Further, we found that the presence of coimplanted vascular smooth muscle cells (vSMCs) in the implants failed to promote blood vessel growth and maturation in a graded, Akt1 kinase activity-dependent manner. These results indicate that constitutive Akt1 activity disrupts the normal blood vessel growth and maturation. Therefore, we suggest that a downregulation of Akt1 activity is necessary for vSMC-induced maturation of newly formed blood vessels to occur.


Asunto(s)
Células Endoteliales/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ingeniería de Tejidos , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/trasplante , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
6.
J Tissue Eng Regen Med ; 5(4): e52-62, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20865694

RESUMEN

The success of tissue engineering depends on the rapid and efficient formation of a functional blood vasculature. Adult blood vessels comprise endothelial cells and perivascular mural cells that assemble into patent tubules ensheathed by a basement membrane during angiogenesis. Using individual vessel components, we characterized intra-scaffold microvessel self-assembly efficiency in a physiological in vivo tissue engineering implant context. Primary human microvascular endothelial and vascular smooth muscle cells were seeded at different ratios in poly-L-lactic acid (PLLA) scaffolds enriched with basement membrane proteins (Matrigel) and implanted subcutaneously into immunocompromised mice. Temporal intra-scaffold microvessel formation, anastomosis and perfusion were monitored by immunohistochemical, flow cytometric and in vivo multiphoton fluorescence microscopy analysis. Vascularization in the tissue-engineering context was strongly enhanced in implants seeded with a complete complement of blood vessel components: human microvascular endothelial and vascular smooth muscle cells in vivo assembled a patent microvasculature within Matrigel-enriched PLLA scaffolds that anastomosed with the host circulation during the first week of implantation. Multiphoton fluorescence angiographic analysis of the intra-scaffold microcirculation showed a uniform, branched microvascular network. 3D image reconstruction analysis of human pulmonary artery smooth muscle cell (hPASMC) distribution within vascularized implants was non-random and displayed a preferential perivascular localization. Hence, efficient microvessel self-assembly, anastomosis and establishment of a functional microvasculture in the native hypoxic in vivo tissue engineering context is promoted by providing a complete set of vascular components.


Asunto(s)
Neovascularización Fisiológica , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Adhesión Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Angiografía con Fluoresceína , Humanos , Inmunohistoquímica , Ácido Láctico/farmacología , Ratones , Ratones Endogámicos NOD , Microcirculación/efectos de los fármacos , Microvasos/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Poliésteres , Polímeros/farmacología , Arteria Pulmonar/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA