Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Biol Chem ; 300(8): 107575, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013537

RESUMEN

Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.

2.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496520

RESUMEN

New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.

3.
Neuro Oncol ; 26(5): 858-871, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38153426

RESUMEN

BACKGROUND: Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS: We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS: We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS: Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.


Asunto(s)
Neoplasias Encefálicas , Endorribonucleasas , Glioblastoma , Células Mieloides , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Ratones , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Respuesta de Proteína Desplegada , Microambiente Tumoral , Células Tumorales Cultivadas , Estrés del Retículo Endoplásmico
4.
Cell Rep ; 42(4): 112378, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37060566

RESUMEN

The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.


Asunto(s)
Linfocitos B , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Tejido Linfoide , Transducción de Señal , Bazo
5.
Cell Death Dis ; 13(11): 969, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400754

RESUMEN

Multiple myeloma (MM) causes approximately 20% of deaths from blood cancers. Notwithstanding significant therapeutic progress, such as with proteasome inhibitors (PIs), MM remains incurable due to the development of resistance. mTORC1 is a key metabolic regulator, which frequently becomes dysregulated in cancer. While mTORC1 inhibitors reduce MM viability and synergize with other therapies in vitro, clinically, mTORC1 inhibitors are not effective for MM. Here we show that the inactivation of mTORC1 is an intrinsic response of MM to PI treatment. Genetically enforced hyperactivation of mTORC1 in MM was sufficient to compromise tumorigenicity in mice. In vitro, mTORC1-hyperactivated MM cells gained sensitivity to PIs and hypoxia. This was accompanied by increased mitochondrial stress and activation of the eIF2α kinase HRI, which initiates the integrated stress response. Deletion of HRI elevated the toxicity of PIs in wt and mTORC1-activated MM. Finally, we identified the drug PMA as a robust inducer of mTORC1 activity, which synergized with PIs in inducing MM cell death. These results help explain the clinical inefficacy of mTORC1 inhibitors in MM. Our data implicate mTORC1 induction and/or HRI inhibition as pharmacological strategies to enhance MM therapy by PIs.


Asunto(s)
Mieloma Múltiple , Inhibidores de Proteasoma , Animales , Ratones , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Transducción de Señal , eIF-2 Quinasa/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36233127

RESUMEN

The endoplasmic reticulum (ER) is a dynamic organelle that responds to demand in secretory proteins by undergoing expansion. The mechanisms that control the homeostasis of ER size and function involve the activation of the unfolded protein response (UPR). The UPR plays a role in various effector functions of immune cells. Mast cells (MCs) are highly granular tissue-resident cells and key drivers of allergic inflammation. Their diverse secretory functions in response to activation through the high-affinity receptor for IgE (FcεRI) suggest a role for the UPR in their function. Using human cord blood-derived MCs, we found that FcεRI triggering elevated the expression level and induced activation of the UPR transducers IRE1α and PERK, accompanied by expansion of the ER. In mouse bone marrow-derived MCs and peritoneal MCs, the ER underwent a more moderate expansion, and the UPR was not induced following MC activation. The deletion of IRE1α in mouse MCs did not affect proliferation, survival, degranulation, or cytokine stimulation following FcεRI triggering, but it did diminish the surface expression of TLR4 and the consequent response to LPS. A similar phenotype was observed in human MCs using an IRE1α inhibitor. Our data indicate that the ER of MCs, primarily of humans, undergoes a rapid remodeling in response to activation that promotes responses to TLR4. We suggest that IRE1α inhibition can be a strategy for inhibiting the hyperactivation of MCs by LPS over the course of allergic responses.


Asunto(s)
Retículo Endoplásmico , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Receptor Toll-Like 4 , Animales , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Homeostasis , Humanos , Inmunoglobulina E/metabolismo , Lipopolisacáridos , Mastocitos/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Receptores de IgE/metabolismo , Receptor Toll-Like 4/metabolismo , Respuesta de Proteína Desplegada
7.
Nat Commun ; 13(1): 4621, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941159

RESUMEN

Pancreatic ß-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise ß-cell identity is unknown. We show here under reversible, chronic stress conditions ß-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of ß-cell function and identity. Upon recovery from stress, ß-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while ß-cells show resilience to episodic ER stress, when episodes exceed a threshold, ß-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest ß-cell adaptive exhaustion contributes to diabetes pathogenesis.


Asunto(s)
Plasticidad de la Célula , Células Secretoras de Insulina , Adaptación Fisiológica , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
8.
Bio Protoc ; 12(24)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36618091

RESUMEN

Group A streptococcus (GAS) is a Gram-positive human pathogen that causes invasive infections with mild to life-threatening severity, like toxic shock syndrome, rheumatic heart disease, and necrotizing fasciitis (NF). NF is characterized by a clinical presentation of widespread tissue destruction due to the rapid spread of GAS infection into fascial planes. Despite quick medical interventions, mortality from NF is high. The early onset of the disease is difficult to diagnose because of non-specific clinical symptoms. Moreover, the unavailability of an effective vaccine against GAS warrants a genuine need for alternative treatments against GAS NF. One endoplasmic reticulum stress signaling pathway (PERK pathway) gets triggered in the host upon GAS infection. Bacteria utilize asparagine release as an output of this pathway for its pathogenesis. We reported that the combination of sub-cutaneous (SC) and intraperitoneal (IP) administration of PERK pathway inhibitors (GSK2656157 and ISRIB) cures local as well as systemic GAS infection in a NF murine model, by reducing asparagine release at the infection site. This protocol's methodology is detailed below. This protocol was validated in: Sci Transl Med (2021), DOI: 10.1126/scitranslmed.abd7465.

9.
Diabetologia ; 65(3): 490-505, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34932133

RESUMEN

AIMS/HYPOTHESIS: Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS: We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS: Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION: Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.


Asunto(s)
Antipsicóticos , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Animales , Antipsicóticos/efectos adversos , Aripiprazol/metabolismo , Aripiprazol/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Olanzapina/efectos adversos , Olanzapina/metabolismo
10.
Diabetes ; 71(3): 453-469, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862201

RESUMEN

The dynamic regulation of autophagy in ß-cells by cycles of fasting-feeding and its effects on insulin secretion are unknown. In ß-cells, mechanistic target of rapamycin complex 1 (mTORC1) is inhibited while fasting and is rapidly stimulated during refeeding by a single amino acid, leucine, and glucose. Stimulation of mTORC1 by nutrients inhibited the autophagy initiator ULK1 and the transcription factor TFEB, thereby preventing autophagy when ß-cells were continuously exposed to nutrients. Inhibition of mTORC1 by Raptor knockout mimicked the effects of fasting and stimulated autophagy while inhibiting insulin secretion, whereas moderate inhibition of autophagy under these conditions rescued insulin secretion. These results show that mTORC1 regulates insulin secretion through modulation of autophagy under different nutritional situations. In the fasting state, autophagy is regulated in an mTORC1-dependent manner, and its stimulation is required to keep insulin levels low, thereby preventing hypoglycemia. Reciprocally, stimulation of mTORC1 by elevated leucine and glucose, which is common in obesity, may promote hyperinsulinemia by inhibiting autophagy.


Asunto(s)
Autofagia/fisiología , Células Secretoras de Insulina/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Animales , Autofagia/efectos de los fármacos , Línea Celular , Ayuno , Glucosa/farmacología , Humanos , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/fisiología , Leucina/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodo Posprandial/fisiología
11.
Sci Transl Med ; 13(605)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349034

RESUMEN

Group A streptococcus (GAS) is among the top 10 causes of mortality from an infectious disease, producing mild to invasive life-threatening manifestations. Necrotizing fasciitis (NF) is characterized by a rapid GAS spread into fascial planes followed by extensive tissue destruction. Despite prompt treatments of antibiotic administration and tissue debridement, mortality from NF is still high. Moreover, there is no effective vaccine against GAS, and early diagnosis of NF is problematic because its clinical presentations are not specific. Thus, there is a genuine need for effective treatments against GAS NF. Previously, we reported that GAS induces endoplasmic reticulum (ER) stress to gain asparagine from the host. Here, we demonstrate that GAS-mediated asparagine induction and release occur through the PERK-eIF2α-ATF4 branch of the unfolded protein response. Inhibitors of PERK or integrated stress response (ISR) blocked the formation and release of asparagine by infected mammalian cells, and exogenously added asparagine overcame this inhibition. Moreover, in a murine model of NF, we show that the inhibitors minimized mortality when mice were challenged with a lethal dose of GAS and reduced bacterial counts and lesion size when mice were challenged with a sublethal dose. Immunohistopathology studies demonstrated that PERK/ISR inhibitors protected mice by enabling neutrophil infiltration into GAS-infected fascia and reducing the pro-inflammatory response that causes tissue damage. Inhibitor treatment was also effective in mice when started at 12 hours after infection. We conclude that host metabolic alteration induced by PERK or ISR inhibitors is a promising therapeutic strategy to treat highly invasive GAS infections.


Asunto(s)
Fascitis Necrotizante , Infecciones Estreptocócicas , Animales , Asparagina , Fascitis Necrotizante/tratamiento farmacológico , Ratones , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus pyogenes , Respuesta de Proteína Desplegada
12.
Nat Commun ; 12(1): 2061, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824318

RESUMEN

Stress can induce cell surface expression of MHC-like ligands, including MICA, that activate NK cells. Human cytomegalovirus (HCMV) glycoprotein US9 downregulates the activating immune ligand MICA*008 to avoid NK cell activation, but the underlying mechanism remains unclear. Here, we show that the N-terminal signal peptide is the major US9 functional domain targeting MICA*008 to proteasomal degradation. The US9 signal peptide is cleaved with unusually slow kinetics and this transiently retained signal peptide arrests MICA*008 maturation in the endoplasmic reticulum (ER), and indirectly induces its degradation via the ER quality control system and the SEL1L-HRD1 complex. We further identify an accessory, signal peptide-independent US9 mechanism that directly binds MICA*008 and SEL1L. Collectively, we describe a dual-targeting immunoevasin, demonstrating that signal peptides can function as protein-integral effector domains.


Asunto(s)
Evasión Inmune , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Señales de Clasificación de Proteína , Proteínas Virales/química , Proteínas Virales/metabolismo , Línea Celular , Citomegalovirus/inmunología , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas/metabolismo , Proteolisis , Solubilidad
13.
Compr Psychoneuroendocrinol ; 7: 100073, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35757056

RESUMEN

Objective: Olanzapine and Aripiprazole are widely used second-generation antipsychotic drugs. Olanzapine, more than Aripiprazole, leads to considerable metabolic side effects including obesity and diabetes. While the underlying mechanisms are not fully understood, these side effects are likely associated with mild inflammation in the metabolic organs. An in vitro model that accurately recapitulates the metabolic impact of olanzapine and aripiprazole should be useful to elucidate the underlying mechanisms. Methods: We established co-cultures of matured adipocytes derived from the human SGBS cell line and the THP-1 human monocytic cell-derived or primary macrophages to explore the effects of both drugs on the response to insulin. Results: Olanzapine, but not aripiprazole induced insulin resistance in SGBS adipocytes only when co-cultured with THP-1 or primary macrophages, polarized either into M0, M1 or M2. Noteworthy, M2 macrophages induced olanzapine-dependent insulin resistance in the absence of induction of pro-inflammatory cytokines. Insulin resistance by olanzapine was stronger than induced by high concentration of pro-inflammatory cytokines even in combinations, suggesting the contribution of factors other than the classical inflammatory cytokines to promote insulin resistance in adipocytes by olanzapine. Conclusion: Macrophage/adipocyte co-cultures recapitulate the features of olanzapine-induced insulin resistance and implicate the existence of yet unknown factors in mediating this effect.

14.
Psychoneuroendocrinology ; 125: 105071, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33360972

RESUMEN

OBJECTIVE: Adipose tissue inflammation and distorted macrophage-adipocyte communication are positively associated with metabolic disturbances. Some pharmacological agents, such as second-generation antipsychotics (SGAs) and synthetic glucocorticoid (GC) dexamethasone, tend to induce adverse metabolic side effects and the underlying mechanisms are not fully understood. Our work aimed to study whether SGAs and dexamethasone affect macrophage phenotype and macrophage-adipocyte communication on gene expression level. We selected the model involving THP-1-derived macrophages, polarized into M0, M1, and M2 phenotypes, and primary human mature subcutaneous adipocytes. METHODS: Abdominal subcutaneous adipose tissue needle biopsies were obtained from 6 healthy subjects (4F/2M; age: 22-64 yr; BMI: 21.7-27.6 kg/m2) followed by isolation of mature adipocytes. THP-1-human monocytic cell line was used for the study. THP-1 monocytes were differentiated and polarized into M0 (naïve), M1 (classically activated), and M2 (alternatively activated) macrophages. During and after polarization the macrophages were treated for 24 h without (control) or with therapeutic and supra-therapeutic concentrations of olanzapine (0.2 µM and 2.0 µM), aripiprazole (1.0 µM and 10 µM) and its active metabolite dehydroaripiprazole (0.4 µM and 4.0 µM). Isolated mature human adipocytes were co-incubated with THP-1-derived polarized macrophages pre-treated with SGAs after their polarization. Adipocytes and macrophages were collected before and after co-culture for mRNA expression analysis of genes involved in inflammation. RESULTS: Co-incubation of mature human adipocytes with human macrophages, regardless of polarization, resulted in a marked induction of pro-inflammatory cytokines in adipocytes, including IL1B, IL6, TNFA, and IL10. Remarkably, it did not affect the expression of adipokines and genes involved in the regulation of energy, lipid, and glucose metabolism in adipocytes. Dexamethasone markedly reduced gene expression of pro-inflammatory cytokines in macrophages and prevented macrophage-induced inflammatory response in adipocytes. In contrast, SGAs did not affect macrophage-adipocyte communication and had a minute anti-inflammatory effect in macrophages at supra-therapeutic concentrations. Interestingly, the adipocytes co-incubated with M1 macrophages pre-treated with dexamethasone and SGAs particularly the supra-therapeutic concentration of olanzapine, reduced expression of LPL, LIPE, AKT1, and SLC2A4, suggesting that the expression of metabolic genes in adipocytes was dependent on the presence of pro-inflammatory M1 macrophages. CONCLUSION: Together, these data suggest that macrophages induce expression of pro-inflammatory genes in human subcutaneous adipocytes without affecting the expression of adipokines or genes involved in energy regulation. Furthermore, our findings demonstrated that SGAs and dexamethasone had a mild effect on macrophage-adipocyte communication in M1 macrophage phenotype.


Asunto(s)
Antipsicóticos , Glucocorticoides , Adipocitos , Adipoquinas , Adulto , Antipsicóticos/farmacología , Citocinas , Dexametasona , Glucocorticoides/farmacología , Humanos , Inflamación , Mediadores de Inflamación , Macrófagos , Persona de Mediana Edad , Olanzapina , Adulto Joven
15.
Elife ; 92020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33210603

RESUMEN

The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP.


When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body's energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.


Asunto(s)
Estrés del Retículo Endoplásmico , Hepatocitos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Leptina/metabolismo , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptores de Leptina/genética , Transducción de Señal , Factor de Transcripción CHOP/genética
16.
J Immunol ; 205(10): 2583-2594, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33067378

RESUMEN

Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.


Asunto(s)
Presentación de Antígeno , Antígenos/inmunología , Células Dendríticas/inmunología , Péptidos/inmunología , Agregado de Proteínas/inmunología , Animales , Antígenos/genética , Línea Celular , Células Dendríticas/metabolismo , Epítopos/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones , Ratones Transgénicos , Ovalbúmina/genética , Ovalbúmina/inmunología , Péptidos/metabolismo
17.
Cell Rep ; 32(4): 107954, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726619

RESUMEN

Diabetic kidney disease (DKD) increases the risk for mortality and is the leading cause of end-stage renal disease. Treatment with sodium-glucose cotransporter 2 inhibitors (SGLT2i) attenuates the progression of DKD, especially in patients with advanced kidney disease. Herein, we show that in diabetes, mTORC1 activity is increased in renal proximal tubule cells (RPTCs) along with enhanced tubule-interstitial fibrosis; this is prevented by SGLT2i. Constitutive activation of mTORC1 in RPTCs induces renal fibrosis and failure and abolishes the renal-protective effects of SGLT2i in diabetes. On the contrary, partial inhibition of mTORC1 in RPTCs prevents fibrosis and the decline in renal function. Stimulation of mTORC1 in RPTCs turns on a pro-fibrotic program in the renal cortex, whereas its inhibition in diabetes reverses the alterations in gene expression. We suggest that RPTC mTORC1 is a critical node that mediates kidney dysfunction in diabetes and the protective effects of SGLT2i by regulating fibrogenesis.


Asunto(s)
Nefropatías Diabéticas/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/etiología , Humanos , Hipoglucemiantes/farmacología , Riñón/metabolismo , Fallo Renal Crónico/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/fisiopatología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo , Porcinos
18.
J Pharmacol Exp Ther ; 374(3): 452-461, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32554435

RESUMEN

Schizophrenia is a mental disease that results in decreased life expectancy and well-being by promoting obesity and sedentary lifestyles. Schizophrenia is treated by antipsychotic drugs. Although the second-generation antipsychotics (SGA), Olanzapine and Aripiprazole, are more effective in treating schizophrenia, they display a higher risk of metabolic side effects, mostly by development of diabetes and insulin resistance, weight gain, and dyslipidemia. Endoplasmic reticulum (ER) stress is induced when ER homeostasis of lipid biosynthesis and protein folding is impaired. This leads to the activation of the unfolded protein response (UPR), a signaling cascade that aims to restore ER homeostasis or initiate cell death. Chronic conditions of ER stress in the liver are associated with diabetes and perturbed lipid metabolism. These metabolic dysfunctions resemble the pharmacological side effects of SGAs. We therefore investigated whether SGAs promote the UPR in human and mouse hepatocytes. We observed full-fledged activation of ER stress by Aripiprazole not by Olanzapine. This occurred at low micromolar concentrations and to variable intensities in different cell types, such as hepatocellular carcinoma, melanoma, and glioblastoma. Mechanistically, Aripiprazole caused depletion of ER calcium, leading to activation of inositol-requiring enzyme 1 (IRE1)and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), two major transducers of the UPR. Cells underwent apoptosis with Aripiprazole treatment, which coincided with UPR induction, and this effect was reduced by adding glutathione without affecting UPR itself. Deletion of IRE1 from HepG2, a human liver cancer cell line, protected cells from Aripiprazole toxicity. Our study reveals for the first time a cytotoxic effect of Aripiprazole that involves the induction of ER stress. SIGNIFICANCE STATEMENT: The antischizophrenic drug Aripiprazole exerts cytotoxic properties at high concentrations. This study shows that this cytotoxicity is associated with the induction of endoplasmic reticulum (ER) stress and IRE1 activation, mechanisms involved in diet-induced obesity. Aripiprazole induced ER stress and calcium mobilization from the ER in human and mouse hepatocytes. Our study highlights a new mechanism of Aripiprazole that is not related to its effect on dopamine signaling.

19.
Nat Commun ; 11(1): 1304, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161259

RESUMEN

The integrated stress response (ISR) converges on eIF2α phosphorylation to regulate protein synthesis. ISR is activated by several stress conditions, including endoplasmic reticulum (ER) stress, executed by protein kinase R-like endoplasmic reticulum kinase (PERK). We report that ER stress combined with ISR inhibition causes an impaired maturation of several tyrosine kinase receptors (RTKs), consistent with a partial block of their trafficking from the ER to the Golgi. Other proteins mature or are secreted normally, indicating selective retention in the ER (sERr). sERr is relieved upon protein synthesis attenuation and is accompanied by the generation of large mixed disulfide bonded complexes, including ERp44. sERr was pharmacologically recapitulated by combining the HIV-protease inhibitor nelfinavir with ISRIB, an experimental drug that inhibits ISR. Nelfinavir/ISRIB combination is highly effective to inhibit the growth of RTK-addicted cell lines and hepatocellular (HCC) cells in vitro and in vivo. Thus, pharmacological sERr can be utilized as a modality for cancer treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Retículo Endoplásmico/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , eIF-2 Quinasa/metabolismo , Acetamidas/farmacología , Acetamidas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Ciclohexilaminas/farmacología , Ciclohexilaminas/uso terapéutico , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Humanos , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nelfinavir/farmacología , Nelfinavir/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , eIF-2 Quinasa/genética
20.
Elife ; 92020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32065579

RESUMEN

The unfolded protein response (UPR) is a cellular homeostatic circuit regulating protein synthesis and processing in the ER by three ER-to-nucleus signaling pathways. One pathway is triggered by the inositol-requiring enzyme 1 (IRE1), which splices the X-box binding protein 1 (Xbp1) mRNA, thereby enabling expression of XBP1s. Another UPR pathway activates the activating transcription factor 6 (ATF6). Here we show that murine cytomegalovirus (MCMV), a prototypic ß-herpesvirus, harnesses the UPR to regulate its own life cycle. MCMV activates the IRE1-XBP1 pathway early post infection to relieve repression by XBP1u, the product of the unspliced Xbp1 mRNA. XBP1u inhibits viral gene expression and replication by blocking the activation of the viral major immediate-early promoter by XBP1s and ATF6. These findings reveal a redundant function of XBP1s and ATF6 as activators of the viral life cycle, and an unexpected role of XBP1u as a potent repressor of both XBP1s and ATF6-mediated activation.


Cells survive by making many different proteins that each carry out specific tasks. To work correctly, each protein must be made and then folded into the right shape. Cells carefully monitor protein folding because unfolded proteins can compromise their viability. A protein called XBP1 is important in controlling how cells respond to unfolded proteins. Normally, cells contain a form of this protein called XBP1u, while increasing numbers of unfolded proteins trigger production of a form called XBP1s. The change from one form to the other is activated by a protein called IRE1. Viruses often manipulate stress responses like the unfolded protein response to help take control of the cell and produce more copies of the virus. Murine cytomegalovirus, which is known as MCMV for short, is a herpes-like virus that infects mice; it stops IRE1 activation and XBP1s production during the later stages of infection. However, research had shown that the unfolded protein response was triggered for a short time at an early stage of infection with MCMV, and it was unclear why this might be. Hinte et al. studied the effect of MCMV on cells grown in the laboratory. The experiments showed that a small dose of cell stress, namely activating the unfolded protein response briefly during early infection, helps to activate genes from the virus that allow it to take over the cell. Together, XBP1s and another protein called ATF6 help to switch on the viral genes. The virus also triggers IRE1 helping to reduce the levels of XBP1u, which could slow down the infection. Later, suppressing the unfolded protein response allows copies of the virus to be made faster to help spread the infection. These findings reveal new details of how viruses precisely manipulate their host cells at different stages of infection. These insights could lead to new ways to manage or prevent viral infections.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Muromegalovirus/genética , Respuesta de Proteína Desplegada , Replicación Viral/fisiología , Proteína 1 de Unión a la X-Box/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Muromegalovirus/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA