Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37833993

RESUMEN

Glioblastoma remains one of the most aggressive cancers of the brain, warranting new methods for early diagnosis and more efficient treatment options. Circular RNAs (circRNAs) are rather new entities with increased stability compared to their linear counterparts that interact with proteins and act as microRNA sponges, among other functions. Herein, we provide a critical overview of the recently described glioblastoma-related circRNAs in the literature, focusing on their roles on glioblastoma cancer cell proliferation, survival, migration, invasion and metastasis, metabolic reprogramming, and therapeutic resistance. The main roles of circRNAs in regulating cancer processes are due to their regulatory roles in essential oncogenic pathways, including MAPK, PI3K/AKT/mTOR, and Wnt, which are influenced by various circRNAs. The present work pictures the wide implication of circRNAs in glioblastoma, thus highlighting their potential as future biomarkers and therapeutic targets/agents.


Asunto(s)
Glioblastoma , MicroARNs , Humanos , ARN Circular/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores
2.
Life Sci ; 318: 121499, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775114

RESUMEN

Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.


Asunto(s)
Neoplasias , Semaforinas , Humanos , Fosfatidilinositol 3-Quinasas , Neoplasias/patología , Neuropilinas/química , Semaforina-3A , Microambiente Tumoral
3.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077530

RESUMEN

Long non-coding RNAs (lncRNA) have recently been identified as key regulators of oxidative stress in several malignancies. The level of reactive oxygen species (ROS) must be constantly regulated to maintain cancer cell proliferation and chemoresistance and to prevent apoptosis. This review will discuss how lncRNAs alter the ROS level in cancer cells. We will first describe the role of lncRNAs in the nuclear factor like 2 (Nrf-2) coordinated antioxidant response of cancer cells. Secondly, we show how lncRNAs can promote the Warburg effect in cancer cells, thus shifting the cancer cell's "building blocks" towards molecules important in oxidative stress regulation. Lastly, we explain the role that lncRNAs play in ROS-induced cancer cell apoptosis and proliferation.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Apoptosis/genética , Humanos , Neoplasias/genética , Estrés Oxidativo/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Especies Reactivas de Oxígeno
4.
Diagnostics (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34441321

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare disease in which the right ventricular myocardium is replaced by islands of fibro-adipose tissue. Therefore, ventricular re-entry circuits can occur, predisposing the patient to ventricular tachyarrhythmias, as well as dilation of the right ventricle that eventually leads to heart failure. Although it is a rare disease with low prevalence in Europe and the United States, many patients are addressed disproportionately for cardiac magnetic resonance imaging (MRI). The most severe consequence of this condition is sudden cardiac death at a young age due to untreated cardiac arrhythmias. The purpose of this paper is to revise the magnetic resonance characteristics of ARVC, including the segmental contraction abnormalities, fatty tissue replacement, decrease of the ejection fraction, and the global RV dilation. Herein, we also present several recent improvements of the 2010 Task Force criteria that are not included within the ARVC diagnosis guidelines. In our opinion, these features will be considered in a future Task Force Consensus.

5.
J Clin Med ; 10(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200885

RESUMEN

Chronic infection with hepatitis C virus (HCV) is one of the leading causes of cirrhosis and hepatocellular carcinoma (HCC). Surveillance of these patients is an essential strategy in the prevention chain, including in the pre/post-antiviral treatment states. Ultrasound elastography techniques are emerging as key methods in the assessment of liver diseases, with a number of advantages such as their rapid, noninvasive, and cost-effective characters. The present paper critically reviews the performance of vibration-controlled transient elastography (VCTE) in the assessment of HCV patients. VCTE measures liver stiffness (LS) and the ultrasonic attenuation through the embedded controlled attenuation parameter (CAP), providing the clinician with a tool for assessing fibrosis, cirrhosis, and steatosis in a noninvasive manner. Moreover, standardized LS values enable proper staging of the underlying fibrosis, leading to an accurate identification of a subset of HCV patients that present a high risk for complications. In addition, VCTE is a valuable technique in evaluating liver fibrosis prior to HCV therapy. However, its applicability in monitoring fibrosis regression after HCV eradication is currently limited and further studies should focus on extending the boundaries of VCTE in this context. From a different perspective, VCTE may be effective in identifying clinically significant portal hypertension (CSPH). An emerging prospect of clinical significance that warrants further study is the identification of esophageal varices. Our opinion is that the advantages of VCTE currently outweigh those of other surveillance methods.

6.
Biomedicines ; 9(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924492

RESUMEN

Atherosclerosis is a key pathological process that causes a plethora of pathologies, including coronary artery disease, peripheral artery disease, and ischemic stroke. The silent progression of the atherosclerotic disease prompts for new surveillance tools that can visualize, characterize, and provide a risk evaluation of the atherosclerotic plaque. Conventional ultrasound methods-bright (B)-mode US plus Doppler mode-provide a rapid, cost-efficient way to visualize an established plaque and give a rapid risk stratification of the patient through the Gray-Weale standardization-echolucent plaques with ≥50% stenosis have a significantly greater risk of ipsilateral stroke. Although rather disputed, the measurement of carotid intima-media thickness (C-IMT) may prove useful in identifying subclinical atherosclerosis. In addition, contrast-enhanced ultrasonography (CEUS) allows for a better image resolution and the visualization and quantification of plaque neovascularization, which has been correlated with future cardiovascular events. Newly emerging elastography techniques such as strain elastography and shear-wave elastography add a new dimension to this evaluation-the biomechanics of the arterial wall, which is altered in atherosclerosis. The invasive counterpart, intravascular ultrasound (IVUS), enables an individualized assessment of the anti-atherosclerotic therapies, as well as a direct risk assessment of these lesions through virtual histology IVUS.

7.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672827

RESUMEN

Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care.

8.
Cancers (Basel) ; 12(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998257

RESUMEN

The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population prompts for a quick response from physicians. As NAFLD can progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC), new non-invasive, rapid, cost-effective diagnostic methods are needed. In this review, we explore the diagnostic performance of ultrasound elastography for non-invasive assessment of NAFLD and NAFLD-related HCC. Elastography provides a new dimension to the conventional ultrasound examination, by adding the liver stiffness quantification in the diagnostic algorithm. Whilst the most efficient elastographic techniques in staging liver fibrosis in NAFLD are vibration controlled transient elastography (VCTE) and 2D-Shear wave elastography (2D-SWE), VCTE presents the upside of assessing steatosis through the controlled attenuation parameter (CAP). Hereby, we have also critically reviewed the most important elastographic techniques for the quantitative characterization of focal liver lesions (FLLs), focusing on HCC: Point shear wave elastography (pSWE) and 2D-SWE. As our paper shows, elastography should not be considered as a substitute for FLL biopsy because of the stiffness values overlap. Furthermore, by using non-invasive, disease-specific surveillance tools, such as US elastography, a subset of the non-cirrhotic NAFLD patients at risk for developing HCC can be detected early, leading to a better outcome. A recent ultrasomics study exemplified the wide potential of 2D-SWE to differentiate benign FLLs from malignant ones, guiding the clinician towards the next steps of diagnosis and contributing to better long-term disease surveillance.

9.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121202

RESUMEN

GLOBOCAN 2018 identified lung cancer as the leading oncological pathology in terms of incidence and mortality rates. Angiogenesis is a key adaptive mechanism of numerous malignancies that promotes metastatic spread in view of the dependency of cancer cells on nutrients and oxygen, favoring invasion. Limitation of the angiogenic process could significantly hamper the disease advancement through starvation of the primary tumor and impairment of metastatic spread. This review explores the basic molecular mechanisms of non-small cell lung cancer (NSCLC) angiogenesis, and discusses the influences of the key proangiogenic factors-the vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (FGF2), several matrix metalloproteinases (MMPs-MMP-2, MMP-7, MMP-9) and hypoxia-and the therapeutic implications of microRNAs (miRNAs, miRs) throughout the entire process, while also providing critical reviews of a number of microRNAs, with a focus on miR-126, miR-182, miR-155, miR-21 and let-7b. Finally, current conventional NSCLC anti-angiogenics-bevacizumab, ramucirumab and nintedanib-are briefly summarized through the lens of evidence-based medicine.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/genética , Inhibidores de la Angiogénesis/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Hipoxia de la Célula/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Metaloproteinasas de la Matriz/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Front Immunol ; 11: 870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477352

RESUMEN

Advancement in cancer research has shown that the tumor microenvironment plays a crucial role in the installation, progression, and dissemination of cancer cells. Among the heterogeneous panel of cells within the malignant microenvironment are tumor-associated macrophages that are sustaining the malignant cells through strict feedback mechanisms and spatial distribution. Considering that the presence of metastasis is one of the main feature associated with decreased survival rates among patients, in the present article we briefly present the involvement of tumor-associated macrophages in the hallmarks of metastasis and their microRNA-related regulation with a focus on lung cancer in order to coordinate the vast information under one pathology. As shown, these cells have emerged as coordinators of immunosuppression, angiogenesis and lymphangiogenesis, vessel intravasation and extravasation of cancer cells, and premetastatic niche formation, transforming the macrophages in potential therapeutic targets and also prognostic markers according to their density within the tumor and polarization phenotype. An indirect therapeutic approach on tumor-associated macrophages can be also represented by regulation of microRNAs involved in their polarization and implicit oncogenic features. Examples of these microRNAs consist in the highly studied miR-21 and miR-155, but also other microRNA with less feedback in the literature: miR-1207-5p, miR-193b, miR-320a, and others.


Asunto(s)
Macrófagos/metabolismo , MicroARNs/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/inmunología , Neoplasias/genética , Neoplasias/inmunología , Animales , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Microambiente Tumoral
11.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817513

RESUMEN

Hypoxia represents a frequent player in a number of malignancies, contributing to the development of the neoplastic disease. This review will discuss the means by which hypoxia powers the mechanisms behind cancer progression, with a majority of examples from lung cancer, the leading malignancy in terms of incidence and mortality rates (the frequent reference toward lung cancer is also for simplification purposes and follow up of the global mechanism in the context of a disease). The effects induced by low oxygen levels are orchestrated by hypoxia-inducible factors (HIFs) which regulate the expression of numerous genes involved in cancer progression. Hypoxia induces epithelial-to-mesenchymal transition (EMT) and metastasis through a complex machinery, by mediating various pathways such as TGF-ß, PI3k/Akt, Wnt, and Jagged/Notch. Concomitantly, hypoxic environment has a vast implication in angiogenesis by stimulating vessel growth through the HIF-1α/VEGF axis. Low levels of oxygen can also promote the process through several other secondary factors, including ANGPT2, FGF, and HGF. Metabolic adaptations caused by hypoxia include the Warburg effect-a metabolic switch to glycolysis-and GLUT1 overexpression. The switch is achieved by directly increasing the expression of numerous glycolytic enzymes that are isoforms of those found in non-malignant cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Hipoxia , Proteínas de Neoplasias , Neoplasias , Neovascularización Patológica , Transducción de Señal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...