Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 296, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674787

RESUMEN

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Asunto(s)
Chlamydiales/metabolismo , Glucógeno/metabolismo , Glucogenólisis , Polisacáridos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidad , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Cinética , Filogenia , Virulencia
2.
Plant Physiol ; 171(3): 1879-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208262

RESUMEN

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Cianobacterias/metabolismo , Glucógeno/metabolismo , Almidón Sintasa/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glucógeno/química , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Mutación , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Synechocystis/genética , Synechocystis/metabolismo
3.
Biochim Biophys Acta ; 1847(6-7): 495-504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25687892

RESUMEN

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.


Asunto(s)
Chlamydiales/fisiología , Plantas/microbiología , Plastidios/microbiología , Simbiosis , Evolución Biológica , Interacciones Huésped-Patógeno
4.
Plant Cell ; 25(10): 3961-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24163312

RESUMEN

Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.


Asunto(s)
Evolución Biológica , Cianobacterias/enzimología , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glucógeno/metabolismo , Oryza/enzimología , Almidón/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cianobacterias/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Mutagénesis , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Exp Bot ; 62(6): 1775-801, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220783

RESUMEN

Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.


Asunto(s)
Evolución Molecular , Glucógeno/metabolismo , Plantas/metabolismo , Plastidios/fisiología , Almidón/metabolismo , Simbiosis , Carbono/metabolismo , Cloroplastos/metabolismo , Duplicación de Gen , Fotosíntesis , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA