Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 3(4): 311-26, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14718574

RESUMEN

We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecular-mass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.


Asunto(s)
Biomarcadores de Tumor/análisis , Proteínas Sanguíneas/análisis , Bases de Datos Bibliográficas , Espectrometría de Masas , Plasma/química , Proteoma/química , Biología Computacional , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Femenino , Humanos , Fragmentos de Péptidos/análisis , Mapeo Peptídico/métodos , Tripsina/farmacología
2.
Mol Cell Proteomics ; 2(10): 1096-103, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12917320

RESUMEN

Serum potentially carries an archive of important histological information whose determination could serve to improve early disease detection. The analysis of serum, however, is analytically challenging due to the high dynamic concentration range of constituent protein/peptide species, necessitating extensive fractionation prior to mass spectrometric analyses. The low molecular weight (LMW) serum proteome is that protein/peptide fraction from which high molecular weight proteins, such as albumin, immunoglobulins, transferrin, and lipoproteins, have been removed. This LMW fraction is made up of several classes of physiologically important proteins such as cytokines, chemokines, peptide hormones, as well as proteolytic fragments of larger proteins. Centrifugal ultrafiltration of serum was used to remove the large constituent proteins resulting in the enrichment of the LMW proteins/peptides. Because albumin is known to bind and transport small molecules and peptides within the circulatory system, the centrifugal ultrafiltration was conducted under solvent conditions effecting the disruption of protein-protein interactions. The LMW serum proteome sample was digested with trypsin, fractionated by strong cation exchange chromatography, and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. Analysis of the tandem mass spectra resulted in the identification of over 340 human serum proteins; however, not a single peptide from serum albumin was observed. The large number of proteins identified demonstrates the efficacy of this method for the removal of large abundant proteins and the enrichment of the LMW serum proteome.


Asunto(s)
Proteínas Sanguíneas/química , Proteoma/química , Proteínas Sanguíneas/aislamiento & purificación , Humanos , Peso Molecular , Proteoma/aislamiento & purificación , Albúmina Sérica/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...