Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824131

RESUMEN

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Asunto(s)
Mitocondrias , ARN de Transferencia , Ribonucleasa P , ARNt Metiltransferasas , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mitocondrias/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Microscopía por Crioelectrón , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/química , Metilación , Conformación de Ácido Nucleico , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética
2.
Acc Chem Res ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331425

RESUMEN

ConspectusRNA modification is a co- or post-transcriptional process by which specific nucleotides are chemically altered by enzymes after their initial incorporation into the RNA chain, expanding the chemical and functional diversity of RNAs. Our understanding of RNA modifications has changed dramatically in recent years. In the past decade, RNA methyltransferases (MTases) have been highlighted in numerous clinical studies and disease models, modifications have been found to be dynamically regulated by demodification enzymes, and significant technological advances have been made in the fields of RNA sequencing, mass spectrometry, and structural biology. Among RNAs, transfer RNAs (tRNAs) exhibit the greatest diversity and density of post-transcriptional modifications, which allow for potential cross-talks and regulation during their incorporation. N1-methyladenosine (m1A) modification is found in tRNAs at positions 9, 14, 16, 22, 57, and 58, depending on the tRNA and organism.Our laboratory has used and developed a large panel of tools to decipher the different mechanisms used by m1A tRNA MTases to recognize and methylate tRNA. We have solved the structures of TrmI from Thermus thermophilus (m1A58), TrmK from Bacillus subtilis (m1A22), and human TRMT10C (m1A9). These MTases do not share the same structure or organization to recognize tRNAs, but they all modify an adenosine, forming a non-Watson-Crick (WC) interaction. For TrmK, nuclear magnetic resonance (NMR) chemical shift mapping of the binding interface between TrmK and tRNASer was invaluable to build a TrmK/tRNA model, where both domains of TrmK participate in the binding of a full-length L-shaped tRNA and where the non-WC purine 13-A22 base pair positions the A22 N1-atom close to the methyl of the S-adenosyl-l-methionine (SAM) TrmK cofactor. For TRMT10C, cryoEM structures showed the MTase poised to N1-methylate A9 or G9 in tRNA and revealed different steps of tRNA maturation, where TRMT10C acts as a tRNA binding platform for sequential docking of each maturation enzyme. This work confers a role for TRMT10C in tRNA quality control and provides a framework to understand the link between mitochondrial tRNA maturation dysfunction and diseases.Methods to directly detect the incorporation of modifications during tRNA biosynthesis are rare and do not provide easy access to the temporality of their introduction. To this end, we have introduced time-resolved NMR to monitor tRNA maturation in the cellular environment. Combined with genetic and biochemical approaches involving the synthesis of specifically modified tRNAs, our methodology revealed that some modifications are incorporated in a defined sequential order, controlled by cross-talks between modification events. In particular, a strong modification circuit, namely Ψ55 → m5U54 → m1A58, controls the modification process in the T-arm of yeast elongator tRNAs. Conversely, we showed that m1A58 is efficiently introduced on unmodified initiator tRNAiMet without the need of any prior modification. Two distinct pathways are therefore followed for m1A58 incorporation in elongator and initiator tRNAs.We are undoubtedly entering an exciting period for the elucidation of the functions of RNA modifications and the intricate mechanisms by which modification enzymes identify and alter their RNA substrates. These are promising directions for the field of epitranscriptomics.

3.
Nucleic Acids Res ; 51(19): 10653-10667, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37650648

RESUMEN

As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.


Asunto(s)
ARN de Transferencia de Metionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN
4.
Nat Struct Mol Biol ; 30(3): 242-243, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922621
5.
Nucleic Acids Res ; 50(10): 5793-5806, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580049

RESUMEN

Chemical synthesis of RNA conjugates has opened new strategies to study enzymatic mechanisms in RNA biology. To gain insights into poorly understood RNA nucleotide methylation processes, we developed a new method to synthesize RNA-conjugates for the study of RNA recognition and methyl-transfer mechanisms of SAM-dependent m6A RNA methyltransferases. These RNA conjugates contain a SAM cofactor analogue connected at the N6-atom of an adenosine within dinucleotides, a trinucleotide or a 13mer RNA. Our chemical route is chemo- and regio-selective and allows flexible modification of the RNA length and sequence. These compounds were used in crystallization assays with RlmJ, a bacterial m6A rRNA methyltransferase. Two crystal structures of RlmJ in complex with RNA-SAM conjugates were solved and revealed the RNA-specific recognition elements used by RlmJ to clamp the RNA substrate in its active site. From these structures, a model of a trinucleotide bound in the RlmJ active site could be built and validated by methyltransferase assays on RlmJ mutants. The methyl transfer by RlmJ could also be deduced. This study therefore shows that RNA-cofactor conjugates are potent molecular tools to explore the active site of RNA modification enzymes.


Asunto(s)
Metiltransferasas , ARN , Adenosina , Dominio Catalítico , Metilación , Metiltransferasas/metabolismo , ARN/metabolismo
6.
Viruses ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337039

RESUMEN

The nucleocapsid domain (NCd), located at the C-terminus of the HIV-1 Gag protein, is involved in numerous stages of the replication cycle, such as the packaging of the viral genome and reverse transcription. It exists under different forms through the viral life cycle, depending on the processing of Gag by the HIV-1 protease. NCd is constituted of two adjacent zinc knuckles (ZK1 and ZK2), separated by a flexible linker and flanked by disordered regions. Here, conformational equilibria between a major and two minor states were highlighted exclusively in ZK2, by using CPMG and CEST NMR experiments. These minor states appear to be temperature dependent, and their populations are highest at physiological temperature. These minor states are present both in NCp7, the mature form of NCd, and in NCp9 and NCp15, the precursor forms of NCd, with increased populations. The role of these minor states in the targeting of NCd by drugs and its binding properties is discussed.


Asunto(s)
VIH-1 , Proteínas de la Cápside/metabolismo , VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral/metabolismo , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
7.
RNA Biol ; 19(1): 191-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35067194

RESUMEN

Maturation of the HIV-1 viral particles shortly after budding is required for infectivity. During this process, the Pr55Gag precursor undergoes a cascade of proteolytic cleavages, and whilst the structural rearrangements of the viral proteins are well understood, the concomitant maturation of the genomic RNA (gRNA) structure is unexplored, despite evidence that it is required for infectivity. To get insight into this process, we systematically analysed the interactions between Pr55Gag or its maturation products (NCp15, NCp9 and NCp7) and the 5' gRNA region and their structural consequences, in vitro. We show that Pr55Gag and its maturation products mostly bind at different RNA sites and with different contributions of their two zinc knuckle domains. Importantly, these proteins have different transient and permanent effects on the RNA structure, the late NCp9 and NCp7 inducing dramatic structural rearrangements. Altogether, our results reveal the distinct contributions of the different Pr55Gag maturation products on the gRNA structural maturation.


Asunto(s)
Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/fisiología , ARN Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Viral/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral
8.
Viruses ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34835118

RESUMEN

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Proteínas de la Nucleocápside/inmunología , Proteasas Virales/inmunología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Ensamble de Virus
9.
Methods Mol Biol ; 2298: 307-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085253

RESUMEN

During their biosynthesis, transfer RNAs (tRNAs) are decorated with a large number of posttranscriptional chemical modifications. Methods to directly detect the introduction of posttranscriptional modifications during tRNA maturation are rare and do not provide information on the temporality of modification events. Here, we report a methodology, using NMR as a tool to monitor tRNA maturation in a nondisruptive and continuous fashion in cellular extracts. This method requires the production of substrate tRNA transcripts devoid of modifications and active cell extracts containing the necessary cellular enzymatic activities to modify RNA. The present protocol describes these different aspects of our method and reports the time-resolved NMR monitoring of the yeast tRNAPhe maturation as an example. The NMR-based methodology presented here could be adapted to investigate diverse features in tRNA maturation.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Conformación de Ácido Nucleico , ARN/genética , Saccharomyces cerevisiae/genética
10.
Methods Mol Biol ; 2323: 67-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086274

RESUMEN

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition. As a proof of concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Proteínas de Unión al ARN/aislamiento & purificación , ARN/aislamiento & purificación , Ampicilina/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Cápside , Cloranfenicol/farmacología , Simulación por Computador , Farmacorresistencia Microbiana/genética , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Levivirus/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Plásmidos/genética , ARN/biosíntesis , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Proteínas de Unión al ARN/biosíntesis
11.
Nucleic Acids Res ; 49(13): 7239-7255, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34023900

RESUMEN

Gene expression is regulated at many levels including co- or post-transcriptionally, where chemical modifications are added to RNA on riboses and bases. Expression control via RNA modifications has been termed 'epitranscriptomics' to keep with the related 'epigenomics' for DNA modification. One such RNA modification is the N6-methylation found on adenosine (m6A) and 2'-O-methyladenosine (m6Am) in most types of RNA. The N6-methylation can affect the fold, stability, degradation and cellular interaction(s) of the modified RNA, implicating it in processes such as splicing, translation, export and decay. The multiple roles played by this modification explains why m6A misregulation is connected to multiple human cancers. The m6A/m6Am writer enzymes are RNA methyltransferases (MTases). Structures are available for functionally characterized m6A RNA MTases from human (m6A mRNA, m6A snRNA, m6A rRNA and m6Am mRNA MTases), zebrafish (m6Am mRNA MTase) and bacteria (m6A rRNA MTase). For each of these MTases, we describe their overall domain organization, the active site architecture and the substrate binding. We identify areas that remain to be investigated, propose yet unexplored routes for structural characterization of MTase:substrate complexes, and highlight common structural elements that should be described for future m6A/m6Am RNA MTase structures.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/química , Adenosina/metabolismo , Animales , Bacterias/enzimología , Humanos , Metiltransferasas/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
12.
Front Mol Biosci ; 8: 638149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681296

RESUMEN

Transportin-1 (Trn1), also known as karyopherin-ß2 (Kapß2), is probably the best-characterized nuclear import receptor of the karyopherin-ß family after Importin-ß, but certain aspects of its functions in cells are still puzzling or are just recently emerging. Since the initial identification of Trn1 as the nuclear import receptor of hnRNP A1 ∼25 years ago, several molecular and structural studies have unveiled and refined our understanding of Trn1-mediated nuclear import. In particular, the understanding at a molecular level of the NLS recognition by Trn1 made a decisive step forward with the identification of a new class of NLSs called PY-NLSs, which constitute the best-characterized substrates of Trn1. Besides PY-NLSs, many Trn1 cargoes harbour NLSs that do not resemble the archetypical PY-NLS, which complicates the global understanding of cargo recognition by Trn1. Although PY-NLS recognition is well established and supported by several structures, the recognition of non-PY-NLSs by Trn1 is far less understood, but recent reports have started to shed light on the recognition of this type of NLSs. Aside from its principal and long-established activity as a nuclear import receptor, Trn1 was shown more recently to moonlight outside nuclear import. Trn1 has for instance been caught in participating in virus uncoating, ciliary transport and in modulating the phase separation properties of aggregation-prone proteins. Here, we focus on the structural and functional aspects of Trn1-mediated nuclear import, as well as on the moonlighting activities of Trn1.

13.
RNA Biol ; 18(11): 1996-2006, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33541205

RESUMEN

All species transcribe ribosomal RNA in an immature form that requires several enzymes for processing into mature rRNA. The number and types of enzymes utilized for these processes vary greatly between different species. In low G + C Gram-positive bacteria including Bacillus subtilis and Geobacillus stearothermophilus, the endoribonuclease (RNase) M5 performs the final step in 5S rRNA maturation, by removing the 3'- and 5'-extensions from precursor (pre) 5S rRNA. This cleavage activity requires initial complex formation between the pre-rRNA and a ribosomal protein, uL18, making the full M5 substrate a ribonucleoprotein particle (RNP). M5 contains a catalytic N-terminal Toprim domain and an RNA-binding C-terminal domain, respectively, shown to assist in processing and binding of the RNP. Here, we present structural data that show how two Mg2+ ions are accommodated in the active site pocket of the catalytic Toprim domain and investigate the importance of these ions for catalysis. We further perform solution studies that support the previously proposed 3'-before-5' order of removal of the pre-5S rRNA extensions and map the corresponding M5 structural rearrangements during catalysis.


Asunto(s)
Bacillus subtilis/enzimología , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Geobacillus stearothermophilus/enzimología , Magnesio/metabolismo , Precursores del ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Ribosómico 5S/metabolismo , Secuencia de Aminoácidos , Endorribonucleasas/genética , Conformación de Ácido Nucleico , Precursores del ARN/genética , ARN Bicatenario/genética , ARN Ribosómico 5S/genética , Ribosomas/genética , Ribosomas/metabolismo , Especificidad por Sustrato
14.
Crit Rev Biochem Mol Biol ; 56(2): 178-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33618598

RESUMEN

Organisms from all domains of life invest a substantial amount of energy for the introduction of RNA modifications into nearly all transcripts studied to date. Instrumental analysis of RNA can focus on the modified residues and reveal the function of these epitranscriptomic marks. Here, we will review recent advances and breakthroughs achieved by NMR spectroscopy, sequencing, and mass spectrometry of the epitranscriptome.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/genética , Animales , Epigénesis Genética , Humanos , Espectrometría de Masas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Análisis de Secuencia de ARN/métodos , Transcriptoma
15.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003650

RESUMEN

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.


Asunto(s)
VIH-1/metabolismo , Ácidos Nucleicos/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , VIH-1/genética , Nucleocápside/metabolismo , Unión Proteica , ARN Viral , Factores de Transcripción , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
16.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991829

RESUMEN

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Precursores del ARN/metabolismo , Ribonucleasas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , Modelos Moleculares , Precursores del ARN/ultraestructura , Ribonucleasas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Especificidad por Sustrato
17.
Nucleic Acids Res ; 48(16): 9218-9234, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32797159

RESUMEN

The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Proteínas Ribosómicas/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Secuencia de Aminoácidos/genética , Infecciones por VIH/virología , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Chaperonas Moleculares/genética , Conformación de Ácido Nucleico , Ácidos Nucleicos/genética , ARN Viral/genética , Ensamble de Virus/genética
18.
Plant J ; 104(1): 185-199, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639596

RESUMEN

Roses use a non-canonical pathway involving a Nudix hydrolase, RhNUDX1, to synthesize their monoterpenes, especially geraniol. Here we report the characterization of another expressed NUDX1 gene from the rose cultivar Rosa x wichurana, RwNUDX1-2. In order to study the function of the RwNUDX1-2 protein, we analyzed the volatile profiles of an F1 progeny generated by crossing R. chinensis cv. 'Old Blush' with R. x wichurana. A correlation test of the volatilomes with gene expression data revealed that RwNUDX1-2 is involved in the biosynthesis of a group of sesquiterpenoids, especially E,E-farnesol, in addition to other sesquiterpenes. In vitro enzyme assays and heterologous in planta functional characterization of the RwNUDX1-2 gene corroborated this result. A quantitative trait locus (QTL) analysis was performed using the data of E,E-farnesol contents in the progeny and a genetic map was constructed based on gene markers. The RwNUDX1-2 gene co-localized with the QTL for E,E-farnesol content, thereby confirming its function in sesquiterpenoid biosynthesis in R. x wichurana. Finally, in order to understand the structural bases for the substrate specificity of rose NUDX proteins, the RhNUDX1 protein was crystallized, and its structure was refined to 1.7 Å. By molecular modeling of different rose NUDX1 protein complexes with their respective substrates, a structural basis for substrate discrimination by rose NUDX1 proteins is proposed.


Asunto(s)
Proteínas de Plantas/metabolismo , Pirofosfatasas/metabolismo , Rosa/metabolismo , Sesquiterpenos/metabolismo , Farnesol/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Pirofosfatasas/genética , Pirofosfatasas/fisiología , Sitios de Carácter Cuantitativo/genética , Rosa/genética , Alineación de Secuencia , Hidrolasas Nudix
19.
Biomol NMR Assign ; 14(2): 169-174, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32239363

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional modifications during their biosynthesis. To fulfil their functions within cells, tRNAs undergo a tightly controlled biogenesis process leading to the formation of mature tRNAs. In particular, the introduction of post-transcriptional modifications in tRNAs is controlled and influenced by multiple factors. In turn, tRNA biological functions are often modulated by their modifications. Although modifications play essential roles in tRNA biology, methods to directly detect their introduction during tRNA maturation are rare and do not easily provide information on the temporality of modification events. To obtain information on the tRNA maturation process, we have developed a methodology, using NMR as a tool to monitor tRNA maturation in a non-disruptive and continuous fashion in cellular extracts. Here we report the 1H,15N chemical shift assignments of imino groups in three forms of the yeast tRNAPhe differing in their modification content. These assignments are a prerequisite for the time-resolved NMR monitoring of yeast tRNAPhe maturation in yeast extracts.


Asunto(s)
Iminas/química , Espectroscopía de Protones por Resonancia Magnética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Fenilalanina/análisis , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Isótopos de Nitrógeno , ARN de Transferencia de Fenilalanina/química
20.
Bio Protoc ; 10(12): e3646, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659318

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional modifications during their biosynthesis. To fulfil their functions within cells, tRNAs undergo a tightly controlled biogenesis process leading to the formation of mature tRNAs. In addition, functions of tRNAs are often modulated by their modifications. Although the biological importance of post-transcriptional RNA modifications is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. To obtain information on the tRNA maturation process, we have developed a methodology, using NMR as a tool to monitor tRNA maturation in a non-disruptive and continuous fashion in cellular extracts. By following the maturation of a model yeast tRNA with time-resolved NMR, we showed that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. The implementation of this method requires the production for NMR spectroscopy of tRNA samples with different modification status, in order to identify the NMR signature of individual modifications. The production of tRNA samples for the analysis of modification pathways with NMR spectroscopy will be presented here and examplified on the yeast tRNAPhe, but can be extended to any other tRNA by changing the sequence of the construct. The protocol describes the production of unmodified tRNA samples by in vitro transcription, and the production of modified tRNA samples by recombinant expression of tRNAs in E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...