Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 18(1): 18, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177117

RESUMEN

BACKGROUND: Some plastid-derived metabolites can control nuclear gene expression, chloroplast biogenesis, and chlorophyll biosynthesis. For example, norflurazon (NFZ) induced inhibition of carotenoid biosynthesis in leaves elicits a protoporphyrin IX (Mg-ProtoIX) retrograde signal that controls chlorophyll biosynthesis and chloroplast development. Carotenoid cleavage products, known as apocarotenoids, also regulate plastid development. The key steps in carotenoid biosynthesis or catabolism that can regulate chlorophyll biosynthesis in leaf tissues remain unclear. Here, we established a foliar pigment-based bioassay using Arabidopsis rosette leaves to investigate plastid signalling processes in young expanding leaves comprising rapidly dividing and expanding cells containing active chloroplast biogenesis. RESULTS: We demonstrate that environmental treatments (extended darkness and cold exposure) as well as chemical (norflurazon; NFZ) inhibition of carotenoid biosynthesis, reduce chlorophyll levels in young, but not older leaves of Arabidopsis. Mutants with disrupted xanthophyll accumulation, apocarotenoid phytohormone biosynthesis (abscisic acid and strigolactone), or enzymatic carotenoid cleavage, did not alter chlorophyll levels in young or old leaves. However, perturbations in acyclic cis-carotene biosynthesis revealed that disruption of CAROTENOID ISOMERASE (CRTISO), but not ZETA-CAROTENE ISOMERASE (Z-ISO) activity, reduced chlorophyll levels in young leaves of Arabidopsis plants. NFZ-induced inhibition of PHYTOENE DESATURASE (PDS) activity caused higher phytoene accumulation in younger crtiso leaves compared to WT indicating a continued substrate supply from the methylerythritol 4-phosphate (MEP) pathway. CONCLUSION: The Arabidopsis foliar pigment-based bioassay can be used to differentiate signalling events elicited by environmental change, chemical treatment, and/or genetic perturbation, and determine how they control chloroplast biogenesis and chlorophyll biosynthesis. Genetic perturbations that impaired xanthophyll biosynthesis and/or carotenoid catabolism did not affect chlorophyll biosynthesis. The lack of CAROTENOID ISOMERISATION reduced chlorophyll accumulation, but not phytoene biosynthesis in young leaves of Arabidopsis plants growing under a long photoperiod. Findings generated using the newly customised foliar pigment-based bioassay implicate that carotenoid isomerase activity and NFZ-induced inhibition of PDS activity elicit different signalling pathways to control chlorophyll homeostasis in young leaves of Arabidopsis.

2.
Tree Physiol ; 34(10): 1047-55, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25413023

RESUMEN

Total daily water use is a key factor influencing the growth of many terrestrial plants, and reflects both day-time and nocturnal water fluxes. However, while nocturnal sap flow (En) and stomatal conductance (gs,n) have been reported across a range of species, ecosystems and microclimatic conditions, the regulation of these fluxes remains poorly understood. Here, we present a framework describing the role of abiotic and biotic factors in regulating En and gs,n highlighting recent developments in this field. Across ecosystems, En and gs,n generally increased with increasing soil water content and vapor pressure deficit, but the interactive effects of these factors and the potential roles of wind speed and other abiotic factors remain unclear. On average, gs,n and En are higher in broad-leaved compared with needle-leaved plants, in C3 compared with C4 plants, and in tropical compared with temperate species. We discuss the impacts of leaf age, elevated [CO2] and refilling of capacitance on night-time water loss, and how nocturnal gs,n may be included in vegetation models. Younger leaves may have higher gs,n than older leaves. Embolism refilling and recharge of capacitance may affect sap flow such that total plant water loss at night may be less than estimated solely from En measurements. Our estimates of gs,n for typical plant functional types, based on the published literature, suggest that nocturnal water loss may be a significant fraction (10-25%) of total daily water loss. Counter-intuitively, elevated [CO2] may increase nocturnal water loss. Assumptions in process-based ecophysiological models and dynamic global vegetation models that gs is zero when solar radiation is zero are likely to be incorrect. Consequently, failure to adequately consider nocturnal water loss may lead to substantial under-estimation of total plant water use and inaccurate estimation of ecosystem level water balance.


Asunto(s)
Transpiración de Plantas/fisiología , Árboles/fisiología , Dióxido de Carbono , Ecosistema , Modelos Biológicos , Hojas de la Planta/fisiología , Suelo , Agua , Viento
3.
Tree Physiol ; 34(5): 443-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24664613

RESUMEN

Gas exchange, growth, water transport and carbon (C) metabolism diminish during drought according to their respective sensitivities to declining water status. The timing of this sequence of declining physiological functions may determine how water and C relations compromise plant survival. In this paper, we test the hypothesis that the degree of asynchrony between declining C supply (photosynthesis) and C demand (growth and respiration) determines the rate and magnitude of changes in whole-plant non-structural carbohydrates (NSC) during drought. Two complementary experiments using two tree species (Eucalyptus globulus Labill. and Pinus radiata D. Don) with contrasting drought response strategies were performed to (i) assess changes in radial stem growth, transpiration, leaf water potential and gas exchange in response to chronic drought, and (ii) evaluate the concomitant impacts of these drought responses on the temporal patterns of NSC during terminal drought. The three distinct phases of water stress were delineated by thresholds of growth cessation and stomatal closure that defined the 'carbon safety margin' (i.e., the difference between leaf water potential when growth is zero and leaf water potential when net photosynthesis is zero). A wider C safety margin in E. globulus was defined by an earlier cessation of growth relative to photosynthesis that reduced the demand for NSC while maintaining C acquisition. By contrast, the narrower C safety margin in P. radiata was characterized by a synchronous decline in growth and photosynthesis, whereby growth continued under a declining supply of NSC from photosynthesis. The narrower C safety margin in P. radiata was associated with declines in starch concentrations after ∼ 90 days of chronic drought and significant depletion of starch in all organs at mortality. The observed divergence in the sensitivity of drought responses is indicative of a potential trade-off between maintaining hydraulic safety and adequate C availability.


Asunto(s)
Sequías , Eucalyptus/fisiología , Pinus/fisiología , Hojas de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Transpiración de Plantas , Metabolismo de los Hidratos de Carbono , Eucalyptus/crecimiento & desarrollo , Gases/metabolismo , Pinus/crecimiento & desarrollo , Árboles , Agua/metabolismo
4.
Glob Chang Biol ; 19(5): 1407-16, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23504696

RESUMEN

Understanding the direct and indirect effects of elevated [CO2 ] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem-level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2 ] and temperature on foliar quality. We also assessed the interactions between their direct and plant-mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2 ] (400 and 650 µmol mol(-1) respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field-grown leaves within the temperature and [CO2 ] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex-specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2 ] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2 ] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2 ] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2 ] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2 ] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt-feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour.


Asunto(s)
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Herbivoria , Mariposas Nocturnas/metabolismo , Animales , Cambio Climático , Eucalyptus/crecimiento & desarrollo , Conducta Alimentaria/efectos de los fármacos , Calor , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Óvulo/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Pupa/metabolismo
5.
Oecologia ; 171(4): 1025-35, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23053228

RESUMEN

Both atmospheric [CO2] and average surface temperatures are predicted to increase with potentially different, additive or opposing, effects on leaf quality and insect herbivore activity. Few studies have directly measured the interactive effects of concurrent changes in [CO2] and temperature on insect herbivores. None have done so over the entire developmental period of a tree-feeding insect, and none have compared responses to low pre-industrial [CO2] and present day [CO2] to estimate responses to future increases. Eucalypt herbivores may be particularly sensitive to climate-driven shifts in plant chemistry, as eucalypt foliage is naturally low in [N]. In this study, we assessed the development of the eucalypt herbivore Doratifera quadriguttata exposed concurrently to variable [CO2] (290, 400, 650 µmol mol(-1)) and temperature (ambient, ambient +4 °C) on glasshouse-grown Eucalyptus tereticornis. Overall, insects performed best on foliage grown at pre-industrial [CO2], indicating that modern insect herbivores have already experienced nutritional shifts since industrialisation. Rising [CO2] increased specific leaf mass and leaf carbohydrate concentration, subsequently reducing leaf [N]. Lower leaf [N] induced compensatory feeding and impeded insect performance, particularly by prolonging larval development. Importantly, elevated temperature dampened the negative effects of rising [CO2] on larval performance. Therefore, rising [CO2] over the past 200 years may have reduced forage quality for eucalypt insects, but concurrent temperature increases may have partially compensated for this, and may continue to do so in the future. These results highlight the importance of assessing plant-insect interactions within the context of multiple climate-change factors because of the interactive and potentially opposing effects of different factors within and between trophic levels.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Eucalyptus/parasitología , Herbivoria , Mariposas Nocturnas/crecimiento & desarrollo , Temperatura , Análisis de Varianza , Animales , Eucalyptus/química , Interacciones Huésped-Parásitos/fisiología , Larva/crecimiento & desarrollo , Modelos Lineales , Nitrógeno/análisis , Hojas de la Planta/química
6.
New Phytol ; 193(2): 397-408, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22066945

RESUMEN

• Plant light interception efficiency is a crucial determinant of carbon uptake by individual plants and by vegetation. Our aim was to identify whole-plant variables that summarize complex crown architecture, which can be used to predict light interception efficiency. • We gathered the largest database of digitized plants to date (1831 plants of 124 species), and estimated a measure of light interception efficiency with a detailed three-dimensional model. Light interception efficiency was defined as the ratio of the hemispherically averaged displayed to total leaf area. A simple model was developed that uses only two variables, crown density (the ratio of leaf area to total crown surface area) and leaf dispersion (a measure of the degree of aggregation of leaves). • The model explained 85% of variation in the observed light interception efficiency across the digitized plants. Both whole-plant variables varied across species, with differences in leaf dispersion related to leaf size. Within species, light interception efficiency decreased with total leaf number. This was a result of changes in leaf dispersion, while crown density remained constant. • These results provide the basis for a more general understanding of the role of plant architecture in determining the efficiency of light harvesting.


Asunto(s)
Biodiversidad , Luz , Fotoquímica/métodos , Plantas/anatomía & histología , Plantas/efectos de la radiación , Madera/anatomía & histología , Madera/efectos de la radiación , Tamaño Corporal , Modelos Biológicos , Dinámicas no Lineales , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Análisis de Regresión
7.
Tree Physiol ; 28(4): 537-49, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18244941

RESUMEN

We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.


Asunto(s)
Biomasa , Árboles/fisiología , Geografía , New York , Hojas de la Planta/fisiología , Especificidad de la Especie , Árboles/anatomía & histología
8.
Tree Physiol ; 21(12-13): 915-23, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11498338

RESUMEN

Photosynthesis of tree seedlings is generally enhanced during short-term exposure to elevated atmospheric CO2 partial pressure, but longer-term studies often indicate some degree of photosynthetic adjustment. We present physiological and biochemical evidence to explain observed long-term photosynthetic responses to elevated CO2 partial pressure as influenced by needle age and canopy position. We grew Pinus radiata D. Don. trees in open-top chambers for 5 years in sandy soil at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. The trees were well watered and exposed to natural light and ambient temperature. In the fourth year of CO2 exposure (fall 1997), when foliage growth had ceased for the year, photosynthetic down-regulation was observed in 1-year-old needles, but not in current-year needles, suggesting a reduction in carbohydrate sink strength as a result of increasing needle age (Turnbull et al. 1998). In 5-year-old trees (spring 1997), when foliage expansion was occurring, photosynthetic down-regulation was not observed, reflecting significantly large sinks for carbohydrates throughout the tree. Net photosynthesis was stimulated by 79% in trees growing in elevated CO2 partial pressure, but there was no significant effect on photosynthetic capacity or Rubisco activity and concentration. Current-year needles were more responsive to elevated CO2 partial pressure than 1-year-old needles, exhibiting larger relative increases in net photosynthesis to elevated CO2 partial pressure (98 versus 64%). Lower canopy and upper canopy leaves exhibited similar relative responses to growth in elevated CO2 partial pressure. However, needles in the upper canopy exhibited higher net photosynthesis, photosynthetic capacity, and Rubisco activity and concentration than needles in the lower canopy. Given that the ratio of mature to juvenile foliage mass in the canopy will increase as trees mature, we suggest that trees may become less responsive to elevated CO2 partial pressure with increasing age. We conclude that tree response to elevated CO2 partial pressure is based primarily on sink strength and not on the duration of exposure.


Asunto(s)
Dióxido de Carbono/fisiología , Fotosíntesis/fisiología , Pinus/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Presión Parcial
9.
Tree Physiol ; 21(9): 571-8, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11390301

RESUMEN

We measured responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species (Quercus rubra L., Quercus prinus L. and Acer rubrum L.) at two sites differing in water availability within a single catchment in the Black Rock Forest, New York. The response of respiration to temperature differed significantly among the species. Acer rubrum displayed the smallest increase in respiration with increasing temperature. Corresponding Q(10) values ranged from 1.5 in A. rubrum to 2.1 in Q. prinus. Dark respiration at ambient air temperatures, expressed on a leaf area basis (Rarea), did not differ significantly between species, but it was significantly lower (P < 0.01) in trees at the wetter (lower) site than at the drier (upper) site (Q. rubra: 0.8 versus 1.1 micromol m(-2) s(-1); Q. prinus: 0.95 versus 1.2 micromol m(-2) s(-1)). In contrast, when expressed on a leaf mass basis (R(mass)), respiration rates were significantly higher (P < 0.01) in A. rubrum (12.5-14.6 micromol CO(2) kg(-1) s(-1)) than in Q. rubra (8.6-9.9 micromol CO(2) kg(-1) s(-1)) and Q. prinus (9.2-10.6 micromol CO(2) kg(-1) s(-1)) at both the lower and upper sites. Respiration on a nitrogen basis (R(N)) displayed a similar response to R(mass). The consistency in R(mass) and R(N) between sites indicates a strong coupling between factors influencing respiration and those affecting leaf characteristics. Finally, the relationships between dark respiration and A(max) differed between sites. Trees at the upper site had higher rates of leaf respiration and lower A(max) than trees at the lower site. This shift in the balance of carbon gain and loss clearly limits carbon acquisition by trees at sites of low water availability, particularly in the case of A. rubrum.


Asunto(s)
Hojas de la Planta/fisiología , Quercus/fisiología , Árboles/fisiología , New York , Temperatura , Agua
10.
Proc Natl Acad Sci U S A ; 98(5): 2479-84, 2001 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11226264

RESUMEN

Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO(2) on leaf R during illumination are largely unknown. We studied the effects of elevated CO(2) on leaf R in light (R(L)) and in darkness (R(D)) in Xanthium strumarium at different developmental stages. Leaf R(L) was estimated by using the Kok method, whereas leaf R(D) was measured as the rate of CO(2) efflux at zero light. Leaf R(L) and R(D) were significantly higher at elevated than at ambient CO(2) throughout the growing period. Elevated CO(2) increased the ratio of leaf R(L) to net photosynthesis at saturated light (A(max)) when plants were young and also after flowering, but the ratio of leaf R(D) to A(max) was unaffected by CO(2) levels. Leaf R(N) was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO(2)-grown plants. The ratio of leaf R(L) to R(D) was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO(2) concentrations but to a lesser degree for elevated (17-24%) than for ambient (29-35%) CO(2)-grown plants, presumably because elevated CO(2)-grown plants had a higher demand for energy and carbon skeletons than ambient CO(2)-grown plants in light. Our results suggest that using the CO(2) efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO(2)-grown plants.


Asunto(s)
Asteraceae/fisiología , Atmósfera , Dióxido de Carbono/metabolismo , Oscuridad , Luz , Hojas de la Planta/fisiología
11.
Proc Natl Acad Sci U S A ; 98(5): 2473-8, 2001 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-11226263

RESUMEN

With increasing interest in the effects of elevated atmospheric CO(2) on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO(2). Our research shows that elevated CO(2) produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO(2)-dosing technologies were examined. Growth in elevated CO(2) increased numbers of mitochondria per unit cell area by 1.3-2.4 times the number in control plants grown in lower CO(2) and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO(2) treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO(2) effect on mitochondrial number, elevated CO(2) promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO(2) concentrations.


Asunto(s)
Dióxido de Carbono , Cloroplastos/ultraestructura , Mitocondrias/ultraestructura , Desarrollo de la Planta , Microscopía Electrónica , Plantas/ultraestructura
12.
Tree Physiol ; 16(1_2): 49-59, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-14871747

RESUMEN

To detect seasonal and long-term differences in growth and photosynthesis of loblolly pine (Pinus taeda L.) exposed to elevated CO(2) under ambient conditions of precipitation, light, temperature and nutrient availability, seedlings were planted in soil representative of an early, abandoned agricultural field and maintained for 19 months in the field either in open-top chambers providing one of three atmospheric CO(2) partial pressures (ambient, ambient +15 Pa, and ambient +30 Pa) or in unchambered control plots. An early and positive response to elevated CO(2) substantially increased total plant biomass. Peak differences in relative biomass enhancement occurred after 11 months of CO(2) treatment when biomass of plants grown at +15 and +30 Pa CO(2) was 111 and 233% greater, respectively, than that of plants grown at ambient CO(2). After 19 months, there was no significant difference in biomass between +15 Pa CO(2)-treated plants and ambient CO(2)-treated plants, whereas biomass of +30 Pa CO(2)-treated plants was 111% greater than that of ambient CO(2)-treated plants. Enhanced rates of leaf-level photosynthesis were maintained in plants in the elevated CO(2) treatments throughout the 19-month exposure period despite reductions in both leaf N concentration and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity during the first 11 months of CO(2) exposure. Reductions in Rubisco activity indicated photosynthetic adjustment to elevated CO(2), but Rubisco-mediated control of photosynthesis was small. Seasonal shifts in sink strength affected photosynthetic rates, greatly magnifying the positive effects of elevated CO(2) on photosynthesis during periods of rapid plant growth. Greater carbon assimilation by the whole plant accelerated plant development and thereby stimulated new sinks for carbon through increased plant biomass, secondary branching and new leaf production. We conclude that elevated CO(2) will enhance photosynthesis and biomass accumulation in loblolly pine seedlings under high nutrient conditions; however, reductions over time in the relative biomass response of plants to elevated CO(2) complicate predictions of the eventual magnitude of carbon storage in this species under future CO(2) conditions.

13.
Oecologia ; 109(1): 28-33, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307609

RESUMEN

Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67-71 days under ambient CO2 (35 Pa) and elevated CO2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N2 fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO2 plants indicating that more carbon was available for transport to nodules. A 14CO2 pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO2. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO2, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO2. These results suggest that Gliricidia, and possibly other N2-fixing trees, may show an early and positive growth response to elevated CO2, even in severely N-deficient soils, due to increased nitrogenase activity.

14.
Oecologia ; 101(1): 13-20, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28306970

RESUMEN

In order study C3 and C4 plant growth in atmospheric CO2 levels ranging from past through predicted future levels, Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) were grown from seed in growth chambers controlled at CO2 partial pressures of 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current) and 70 Pa (predicted future). After 35 days of growth, CO2 had no effect on the relative growth rate, total biomass or partitioning of biomass in the C4 species. However, the C3 species had greater biomass accumulation with increasing CO2 partial pressure. C3 plants grown in 15 Pa CO2 for 35 days had only 8% of the total biomass of plants grown in 35 Pa CO2, C3 plants had lower relative growth rates and lower specific leaf mass than plants grown in higher CO2 partial pressures, and aborted reproduction. C3 plants grown in 70 Pa CO2 had greater root mass and root-to-shoot ratios than plants grown in lower CO2 partial pressures. These findings, support other studies that show C3 plant growth is more responsive to CO2 partial pressure than C4 plant growth. Differences in growth responses to CO2 levels of the Pleistocene through the future suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. This study also provided evidence that C3 annuals may be operating near a minimum CO2 partial pressure for growth and reproduction at 15 Pa CO2.

15.
Oecologia ; 101(1): 21-28, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28306971

RESUMEN

Abutilon theophrasti (C3) and Amaranthus retroflexus (C4), were grown from seed at four partial pressures of CO2: 15 Pa (below Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) in the Duke Phytotron under high light, high nutrient, and wellwatered conditions to evaluate their photosynthetic response to historic and future levels of CO2. Net photosynthesis at growth CO2 partial pressures increased with increasing CO2 for C3 plants, but not C4 plants. Net photosynthesis of Abutilon at 15 Pa CO2 was 70% less than that of plants grown at 35 Pa CO2, due to greater stomatal and biochemical limitations at 15 Pa CO2. Relative stomatal limitation (RSL) of Abutilon at 15 Pa CO2 was nearly 3 times greater than at 35 Pa CO2. A photosynthesis model was used to estimate ribulose-1,5-bisphosphate carboxylase (rubisco) activity (Vcmax), electron transport mediated RuBP regeneration capacity (J max), and phosphate regeneration capacity (PiRC) in Abutilon from net photosynthesis versus intercellular CO2 (A-C i) curves. All three component processes decreased by approximately 25% in Abutilon grown at 15 Pa compared with 35 Pa CO2. Abutilon grown at 15 Pa CO2 had significant reductions in total rubisco activity (25%), rubisco content (30%), activation state (29%), chlorophyll content (39%), N content (32%), and starch content (68%) compared with plants grown at 35 Pa CO2. Greater allocation to rubisco relative to light reaction components and concomitant decreases in J max and PiRC suggest co-regulation of biochemical processes occurred in Abutilon grown at 15 Pa CO2. There were no significant differences in photosynthesis or leaf properties in Abutilon grown at 27 Pa CO2 compared with 35 Pa CO2, suggesting that the rise in CO2 since the beginning of the industrial age has had little effect on the photosynthetic performance of Abutilon. For Amaranthus, limitations of photosynthesis were balanced between stomatal and biochemical factors such that net photosynthesis was similar in all CO2 treatments. Differences in photosynthetic response to growth over a wide range of CO2 partial pressures suggest changes in the relative performance of C3 and C4 annuals as atmospheric CO2 has fluctuated over geologic time.

16.
Oecologia ; 75(2): 266-271, 1988 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28310844

RESUMEN

Agave deserti, a monocarpic perennial occurring in the northwestern Sonoran Desert, produces ramets on rhizomes that extend from the base of a parent plant. Shading ramtes to light compensation for two years did not decrease their relative growth rate (RGR) compared with unshaded ramets. However, the parents experienced a 30% decrease in total nonstructural carbohydrate (TNC) level, suggesting that carbohydrates were translocated from parents to ramets. Shaded parents had RGR's similar to unshaded parents, due in large part to consumption of 50% of the TNC reserves of shaded parents, but about 10% of the growth of the shaded parents was attributed to TNC received from their attached ramets. Estimates of parent and ramet growth separately, based on changes in TNC levels (converted to dry weight using a measured production value), net CO2 uptake of unfolded leaves, and respiration of roots, stems, and folded leaves, were similar to measured growth of parents and ramets combined, suggesting that parents and ramets are physiologically integrated and grow as a unit. Large TNC reserves, which were also shown to support growth during conditions of water limitation in the field, enhance the growth of ramets in an environment where seedling establishment is rare.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA