Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stat Med ; 42(24): 4484-4513, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37528626

RESUMEN

We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity-based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias-corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines, but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect CD4 guidelines for anti-retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age-based patient cost-sharing on healthcare utilization in Taiwan. Complete replication materials employing publicly available data and statistical software in Python, R and Stata are provided, offering researchers all necessary tools to conduct an RD analysis.

2.
J Am Stat Assoc ; 116(536): 1865-1880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35756161

RESUMEN

Uncertainty quantification is a fundamental problem in the analysis and interpretation of synthetic control (SC) methods. We develop conditional prediction intervals in the SC framework, and provide conditions under which these intervals offer finite-sample probability guarantees. Our method allows for covariate adjustment and non-stationary data. The construction begins by noting that the statistical uncertainty of the SC prediction is governed by two distinct sources of randomness: one coming from the construction of the (likely misspecified) SC weights in the pre-treatment period, and the other coming from the unobservable stochastic error in the post-treatment period when the treatment effect is analyzed. Accordingly, our proposed prediction intervals are constructed taking into account both sources of randomness. For implementation, we propose a simulation-based approach along with finite-sample-based probability bound arguments, naturally leading to principled sensitivity analysis methods. We illustrate the numerical performance of our methods using empirical applications and a small simulation study. Python, R and Stata software packages implementing our methodology are available.

3.
J Policy Anal Manage ; 36(3): 643-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28654224

RESUMEN

The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The most common inference approaches in RD designs employ "flexible" parametric and nonparametric local polynomial methods, which rely on extrapolation and large-sample approximations of conditional expectations using observations somewhat near the cutoff that determines treatment assignment. An alternative inference approach employs the idea of local randomization, where the very few units closest to the cutoff are regarded as randomly assigned to treatment and finite-sample exact inference methods are used. In this paper, we contrast these approaches empirically by re-analyzing the influential findings of Ludwig and Miller (2007), who studied the effect of Head Start assistance on child mortality employing parametric RD methods. We first review methods based on approximations of conditional expectations, which are relatively well developed in the literature, and then present new methods based on randomization inference. In particular, we extend the local randomization framework to allow for parametric adjustments of the potential outcomes; our extended framework substantially relaxes strong assumptions in prior literature and better resembles other RD inference methods. We compare all these methods formally, focusing on both estimands and inference properties. In addition, we develop new approaches for randomization-based sensitivity analysis specifically tailored to RD designs. Applying all these methods to the Head Start data, we find that the original RD treatment effect reported in the literature is quite stable and robust, an empirical finding that enhances the credibility of the original result. All the empirical methods we discuss are readily available in general purpose software in R and Stata; we also provide the dataset and software code needed to replicate all our results.


Asunto(s)
Mortalidad del Niño , Intervención Educativa Precoz/estadística & datos numéricos , Política de Salud , Formulación de Políticas , Proyectos de Investigación , Preescolar , Humanos , Investigación , Proyectos de Investigación/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA