Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123351

RESUMEN

Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.

2.
Front Pharmacol ; 15: 1417399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119607

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.

3.
Mini Rev Med Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38982701

RESUMEN

Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.

4.
J Sci Food Agric ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988267

RESUMEN

BACKGROUND: The stem of Abroma augusta contains mucilaginous polysaccharides having numerous ethnomedicinal properties. The present work aimed to develop a scalable ultrasonic-assisted aqueous Abroma augusta mucilage (AAM) extraction (UAE) method and further explores its emulsifying property and toxicity concern. RESULTS: The combination of ultrasonic power (750 W), solid-to-liquid ratio (1:15) and temperature (348 K) gave the highest extraction yield of 2.28% with a diffusivity value of 3.85 × 10-9 m2 s-1, which was higher than aqueous extraction method using a kinetic model based on Fick's second law of diffusion. The extracted polysaccharide showed no toxicity as measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay on RAW cell line. Additionally, the polysaccharide over its critical micelle concentration (400, 500, 600 and 700 µg mL-1) offered emulsifying properties with 0.5%, 1% and 5% oil (v/v). The emulsion with a polysaccharide concentration of 600 µg mL-1 with 5% oil (v/v) provides stability against coalescence for 3 days. CONCLUSION: The overall findings indicated that UAE of AAM polysaccharide can be used for an efficient extraction method, and the obtained polysaccharide is nontoxic in nature and bears emulsifying properties. © 2024 Society of Chemical Industry.

5.
Med Rev (2021) ; 4(3): 235-238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919399

RESUMEN

The protein, N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, is significantly decreased or absent in many types of cancer. There is a significant negative correlation between the levels of NDRG2 and the development and progression of cancer tumor recurrence and tumor invasion, in different cancers. In contrast, the in vitro and in vivo overexpression of the NDRG2 protein decreases the proliferation, growth, adhesion and migration of many types of cancer cells. The in vitro overexpression of NDRG2 increases the efficacy of certain anticancer drugs in specific types of cancer cells. We hypothesize that the delivery of the mRNA of the NDRG2 protein, encapsulated by lipid nanoparticles, could represent a potential treatment of metastatic and drug-resistant cancers. This would be accomplished using a self-amplifying mRNA that encodes the NDRG2 protein and an RNA-dependent-RNA polymerase, obtained from an in vitrotranscribed (IVT) mRNA. The IVT mRNA would be encapsulated in a lipid nanoformulation. The efficacy of the nanoformulation would be determined in cultured cancer cells and if the results are positive, nude mice transplanted with either drug-resistant or metastatic drug-resistant cancer cells, would be treated with the nano- formulation and monitored for efficacy and adverse effects. If the appropriate preclinical studies indicate this formulation is efficacious and safe, it is possible it could be evaluated in clinical trials.

6.
Gastroenterol Rep (Oxf) ; 12: goae033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690290

RESUMEN

Evidence-based research has confirmed the role of gastrointestinal microbiota in regulating intestinal inflammation. These data have generated interest in developing microbiota-based therapies for the prevention and management of inflammatory bowel disease (IBD). Despite in-depth understanding of the etiology of IBD, it currently lacks a cure and requires ongoing management. Accumulating data suggest that an aberrant gastrointestinal microbiome, often referred to as dysbiosis, is a significant environmental instigator of IBD. Novel microbiome-targeted interventions including prebiotics, probiotics, fecal microbiota transplant, and small molecule microbiome modulators are being evaluated as therapeutic interventions to attenuate intestinal inflammation by restoring a healthy microbiota composition and function. In this review, the effectiveness and challenges of microbiome-centered interventions that have the potential to alleviate intestinal inflammation and improve clinical outcomes of IBD are explored.

7.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702989

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Asunto(s)
Apoptosis , Proliferación Celular , Glioblastoma , Limoninas , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología
8.
Expert Opin Drug Deliv ; 21(5): 695-712, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38787783

RESUMEN

INTRODUCTION: Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED: Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION: Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/tratamiento farmacológico , Animales , Nanotecnología , Disponibilidad Biológica , Soluciones Oftálmicas/administración & dosificación , Administración Oftálmica , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones de Acción Retardada , Nanopartículas
9.
Artículo en Inglés | MEDLINE | ID: mdl-38784601

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aß) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aß deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.

10.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627904

RESUMEN

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Asunto(s)
Neoplasias de la Mama , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Trastornos del Movimiento , Humanos , Femenino , Ciclofosfamida/efectos adversos , Antraciclinas/uso terapéutico , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Antibióticos Antineoplásicos , Doxorrubicina/farmacología , Neoplasias de la Mama/patología , Trastornos del Movimiento/tratamiento farmacológico
11.
Crit Rev Ther Drug Carrier Syst ; 41(5): 111-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38608134

RESUMEN

Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.


Asunto(s)
Dolor Agudo , Analgésicos , Humanos , Meloxicam , Sistemas de Liberación de Medicamentos , Inflamación
12.
Environ Sci Pollut Res Int ; 31(19): 27509-27530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573572

RESUMEN

Catastrophic oil spill is one of the major issues to the environment. Various methods have been used to treat oil spillage including in situ burning, the use of skimmers, dispersants, bioremediation, dispersing agents, oil sorbents, and biological agents. Application of oil sorbent is one of the effective solutions in oil spill clean-up. Polymers are sustainable extraordinary materials for the treatment of oil spillage due to their special physicochemical characteristics such as high porosity, good hydrophobicity, and reusability. Polymers are modified using suitable chemical reagents and their hydrophobicity is enhanced, making them suitable for oil spill clean-up. The present manuscript is an attempt to summarize the study of chemical modifications done on a polymer polyurethane (PU) for achieving the desirable properties, for efficient oil spill clean-up. A patent analysis has been carried out for the leading countries, top inventors, leading assignees, trends of patent publications, citation analysis, and summary of granted patents in the area of the use of a polymer Polyurethane (PU) for oil spill clean-up.


Asunto(s)
Restauración y Remediación Ambiental , Contaminación por Petróleo , Poliuretanos , Poliuretanos/química , Restauración y Remediación Ambiental/métodos
13.
Mini Rev Med Chem ; 24(15): 1449-1468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343053

RESUMEN

Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Lisosomas , Neoplasias , Humanos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Animales
14.
Mini Rev Med Chem ; 24(15): 1409-1426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385496

RESUMEN

Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.


Asunto(s)
Epigénesis Genética , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Epigénesis Genética/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química
15.
AAPS PharmSciTech ; 25(2): 28, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302687

RESUMEN

Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.


Asunto(s)
Ciclosporina , Ojo , Animales , Porcinos , Emulsiones , Inmunosupresores , Sistemas de Liberación de Medicamentos
16.
Curr Top Med Chem ; 24(6): 523-540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38258788

RESUMEN

Scientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance. Cytokines play a significant role in cancer cell growth and progression, and the present article highlights their substantial contribution to mechanisms of resistance toward therapeutic drugs. Multiple clinical studies have even described the importance of specific cytokines released from cancer cells as well as stromal cells in conferring resistance. Herein, we discuss the different mechanism behind drug resistance and the crosstalk between tumor development and cytokines release and their contribution to showing resistance towards chemotherapeutics. As a part of this review, different approaches to cytokines profile have been identified and employed to successfully target new evolving mechanisms of resistance and their possible treatment options.


Asunto(s)
Antineoplásicos , Citocinas , Resistencia a Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Citocinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
17.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38151817

RESUMEN

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Metiltransferasas/metabolismo , Neoplasias/tratamiento farmacológico , Panobinostat/farmacología , Panobinostat/uso terapéutico , Zinc
18.
Pharmaceutics ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38258072

RESUMEN

The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA