Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1144896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559701

RESUMEN

Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.

2.
ASN Neuro ; 14: 17590914221112352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35791633

RESUMEN

Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Remielinización , Aminoácidos Sulfúricos , Animales , Cuprizona/toxicidad , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ésteres/farmacología , Ratones , Esclerosis Múltiple/tratamiento farmacológico , ARN Mensajero
3.
Neurobiol Dis ; 157: 105443, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246771

RESUMEN

Astrocytic glutamate transporters are crucial for glutamate homeostasis in the brain, and dysregulation of these transporters can contribute to the development of epilepsy. Glutamate transporter-1 (GLT-1) is responsible for the majority of glutamate uptake in the dorsal forebrain and has been shown to be reduced at epileptic foci in patients and preclinical models of temporal lobe epilepsy (TLE). Current antiepileptic drugs (AEDs) work primarily by targeting neurons directly through suppression of excitatory neurotransmission or enhancement of inhibitory neurotransmission, which can lead to both behavioral and psychiatric side effects. This study investigates the therapeutic capacity of astrocyte-specific AAV-mediated GLT-1 expression in the intrahippocampal kainic acid (IHKA) model of TLE. In this study, we used Western blot analysis, immunohistochemistry, and long-term-video EEG monitoring to demonstrate that cell-type-specific upregulation of GLT-1 in astrocytes is neuroprotective at early time points during epileptogenesis, reduces seizure frequency and total time spent in seizures, and eliminates large behavioral seizures in the IHKA model of epilepsy. Our findings suggest that targeting glutamate uptake is a promising therapeutic strategy for the treatment of epilepsy.


Asunto(s)
Astrocitos/metabolismo , Epilepsia del Lóbulo Temporal/genética , Transportador 2 de Aminoácidos Excitadores/genética , Hipocampo/metabolismo , Convulsiones/genética , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Agonistas de Aminoácidos Excitadores/toxicidad , Técnicas de Sustitución del Gen , Ácido Kaínico/toxicidad , Ratones , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Regulación hacia Arriba
4.
Brain Pathol ; 31(2): 312-332, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33368801

RESUMEN

Visual deficits are among the most prevalent symptoms in patients with multiple sclerosis (MS). To understand deficits in the visual pathway during MS and potential treatment effects, we used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The afferent visual pathway was assessed in vivo using optical coherence tomography (OCT), electroretinography (ERG), and visually evoked cortical potentials (VEPs). Inflammation, demyelination, and neurodegeneration were examined by immunohistochemistry ex vivo. In addition, an immunomodulatory, remyelinating agent, the estrogen receptor ß ligand chloroindazole (IndCl), was tested for its therapeutic potential in the visual pathway. EAE produced functional deficits in visual system electrophysiology, including suppression of ERG and VEP waveform amplitudes and increased signal latencies. Therapeutic IndCl rescued overall visual system latency by VEP but had little impact on amplitude or ERG findings relative to vehicle. Faster VEP conduction in IndCl-treated mice was associated with enhanced myelin basic protein signal in all visual system structures examined. IndCl preserved retinal ganglion cells (RGCs) and oligodendrocyte density in the prechiasmatic white matter, but similar retinal nerve fiber layer thinning by OCT was noted in vehicle and IndCl-treated mice. Although IndCl differentially attenuated leukocyte and astrocyte staining signal throughout the structures analyzed, axolemmal varicosities were observed in all visual fiber tracts of mice with EAE irrespective of treatment, suggesting impaired axonal energy homeostasis. These data support incomplete functional recovery of VEP amplitude with IndCl, as fiber tracts displayed persistent axon pathology despite remyelination-induced decreases in latencies, evidenced by reduced optic nerve g-ratio in IndCl-treated mice. Although additional studies are required, these findings demonstrate the dynamics of visual pathway dysfunction and disability during EAE, along with the importance of early treatment to mitigate EAE-induced axon damage.


Asunto(s)
Compuestos Azo/farmacología , Encefalomielitis Autoinmune Experimental/patología , Naftalenos/farmacología , Remielinización/efectos de los fármacos , Vías Visuales/efectos de los fármacos , Vías Visuales/patología , Animales , Potenciales Evocados Visuales/efectos de los fármacos , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple , Degeneración Nerviosa/patología
5.
ASN Neuro ; 12: 1759091420979604, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33297722

RESUMEN

While seizure disorders are more prevalent among multiple sclerosis (MS) patients than the population overall and prognosticate earlier death & disability, their etiology remains unclear. Translational data indicate perturbed expression of astrocytic molecules contributing to homeostatic neuronal excitability, including water channels (AQP4) and synaptic glutamate transporters (EAAT2), in a mouse model of MS with seizures (MS+S). However, astrocytes in MS+S have not been examined. To assess the translational relevance of astrocyte dysfunction observed in a mouse model of MS+S, demyelinated lesion burden, astrogliosis, and astrocytic biomarkers (AQP4/EAAT2/ connexin-CX43) were evaluated by immunohistochemistry in postmortem hippocampi from MS & MS+S donors. Lesion burden was comparable in MS & MS+S cohorts, but astrogliosis was elevated in MS+S CA1 with a concomitant decrease in EAAT2 signal intensity. AQP4 signal declined in MS+S CA1 & CA3 with a loss of perivascular AQP4 in CA1. CX43 expression was increased in CA3. Together, these data suggest that hippocampal astrocytes from MS+S patients display regional differences in expression of molecules associated with glutamate buffering and water homeostasis that could exacerbate neuronal hyperexcitability. Importantly, mislocalization of CA1 perivascular AQP4 seen in MS+S is analogous to epileptic hippocampi without a history of MS, suggesting convergent pathophysiology. Furthermore, as neuropathology was concentrated in MS+S CA1, future study is warranted to determine the pathophysiology driving regional differences in glial function in the context of seizures during demyelinating disease.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Homeostasis/fisiología , Esclerosis Múltiple/metabolismo , Convulsiones/metabolismo , Anciano , Astrocitos/patología , Femenino , Gliosis/metabolismo , Gliosis/patología , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/patología , Convulsiones/epidemiología , Convulsiones/patología , Agua/metabolismo
6.
Neurobiol Dis ; 130: 104501, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31226301

RESUMEN

Diffusion tensor imaging (DTI) has been shown to detect white matter degeneration in multiple sclerosis (MS), a neurodegenerative autoimmune disease that presents with diffuse demyelination of the central nervous system. However, the utility of DTI in evaluating therapeutic remyelination has not yet been well-established. Here, we assessed the ability of DTI to distinguish between remyelination and neuroprotection following estrogen receptor ß ligand (Indazole chloride, IndCl) treatment, which has been previously shown to stimulate functional remyelination, in the cuprizone (CPZ) diet mouse model of MS. Adult C57BL/6 J male and female mice received a normal diet (control), demyelination-inducing CPZ diet (9wkDM), or CPZ diet followed by two weeks of a normal diet (i.e., remyelination period) with either IndCl (RM + IndCl) or vehicle (RM + Veh) injections. We evaluated tissue microstructure of the corpus callosum utilizing in vivo and ex vivo DTI and immunohistochemistry (IHC) for validation. Compared to control mice, the 9wkDM group showed decreased fractional anisotropy (FA), increased radial diffusivity (RD), and no changes in axial diffusivity (AD) both in vivo and ex vivo. Meanwhile, RM + IndCl groups showed increased FA and decreased RD ex vivo compared to the RM + Veh group, in accordance with the evidence of remyelination by IHC. In conclusion, the DTI technology used in the present study can identify some changes in myelination and is a valuable translational tool for evaluating MS pathophysiology and therapeutic efficacy.


Asunto(s)
Cuerpo Calloso/diagnóstico por imagen , Enfermedades Desmielinizantes/diagnóstico por imagen , Receptor beta de Estrógeno/agonistas , Indazoles/uso terapéutico , Esclerosis Múltiple/diagnóstico por imagen , Fármacos Neuroprotectores/uso terapéutico , Remielinización/efectos de los fármacos , Animales , Cuerpo Calloso/efectos de los fármacos , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Femenino , Indazoles/farmacología , Imagen por Resonancia Magnética , Masculino , Ratones , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología
7.
J Autoimmun ; 101: 56-69, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010726

RESUMEN

The molecular events underlying the transition from initial inflammatory flares to the progressive phase of multiple sclerosis (MS) remain poorly understood. Here, we report that the microtubule-associated protein (MAP) Tau exerts a gender-specific protective function on disease progression in the MS model experimental autoimmune encephalomyelitis (EAE). A detailed investigation of the autoimmune response in Tau-deficient mice excluded a strong immunoregulatory role for Tau, suggesting that its beneficial effects are presumably exerted within the central nervous system (CNS). Spinal cord transcriptomic data show increased synaptic dysfunctions and alterations in the NF-kB activation pathway upon EAE in Tau-deficient mice as compared to wildtype animals. We also performed the first comprehensive characterization of Tau post-translational modifications (PTMs) in the nervous system upon EAE. We report that the methylation levels of the conserved lysine residue K306 are significantly decreased in the chronic phase of the disease. By combining biochemical assays and molecular dynamics (MD) simulations, we demonstrate that methylation at K306 decreases the affinity of Tau for the microtubule network. Thus, the down-regulation of this PTM might represent a homeostatic response to enhance axonal stability against an autoimmune CNS insult. The results, altogether, position Tau as key mediator between the inflammatory processes and neurodegeneration that seems to unify many CNS diseases.


Asunto(s)
Regulación de la Expresión Génica , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Neuronas/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Proteínas tau/metabolismo , Animales , Autoinmunidad , Línea Celular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Femenino , Redes Reguladoras de Genes , Masculino , Metilación , Ratones , Ratones Noqueados , Modelos Moleculares , Esclerosis Múltiple/patología , Transducción de Señal , Relación Estructura-Actividad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Transcripción Genética , Proteínas tau/química
8.
Neuroscience ; 406: 667-683, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30703503

RESUMEN

Persistent demyelination has been implicated in axon damage and functional deficits underlying neurodegenerative diseases such as multiple sclerosis. The cuprizone diet model of demyelination allows for the investigation of mechanisms underlying timed and reproducible demyelination and remyelination. However, spontaneous oligodendrocyte (OL) progenitor (OPC) proliferation, OPC differentiation, and axon remyelination during cuprizone diet may convolute the understanding of remyelinating events. The Akt (a serine/threonine kinase)/mTOR (the mammalian target of rapamycin) signaling pathway in OLs regulates intermediate steps during myelination. Thus, in an effort to inhibit spontaneous remyelination, the mTOR inhibitor rapamycin has been administered during cuprizone diet. Intrigued by the potential for rapamycin to optimize the cuprizone model by producing more complete demyelination, we sought to characterize the effects of rapamycin on axonal function and myelination. Functional remyelination was assessed by callosal compound action potential (CAP) recordings along with immunohistochemistry in mice treated with rapamycin during cuprizone diet. Rapamycin groups exhibited similar myelination, but significantly increased axonal damage and inflammation compared to non-rapamycin groups. There was minimal change in CAP amplitude between groups, however, a significant decrease in conduction velocity of the slower, non-myelinated CAP component was observed in the rapamycin group relative to the non-rapamycin group. During remyelination, rapamycin groups showed a significant decrease in OPC proliferation and mature OLs, suggesting a delay in OPC differentiation kinetics. In conclusion, we question the use of rapamycin to produce consistent demyelination as rapamycin increased inflammation and axonal damage, without affecting myelination.


Asunto(s)
Cuprizona/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Sirolimus/farmacología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
Sci Rep ; 9(1): 503, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679747

RESUMEN

Pharmaceutical agents currently approved for the treatment of multiple sclerosis reduce relapse rates, but do not reverse or prevent neurodegeneration nor initiate myelin repair. The highly selective estrogen receptor (ER) ß ligand chloroindazole (IndCl) shows particular promise promoting both remyelination while reducing inflammatory cytokines in the central nervous system of mice with experimental autoimmune encephalomyelitis. To optimize these benefits, we developed and screened seven novel IndCl analogues for their efficacy in promoting primary oligodendrocyte (OL) progenitor cell survival, proliferation, and differentiation in vitro by immunohistochemistry. Two analogues, IndCl-o-chloro and IndCl-o-methyl, induced proliferation and differentiation equivalent to IndCl and were selected for subsequent in vivo evaluation for their impact on clinical disease course, white matter pathology, and inflammation. Both compounds ameliorated disease severity, increased mature OLs, and improved overall myelination in the corpus callosum and white matter tracts of the spinal cord. These effects were accompanied by reduced production of the OL toxic molecules interferon-γ and chemokine (C-X-C motif) ligand, CXCL10 by splenocytes with no discernable effect on central nervous system-infiltrating leukocyte numbers, while IndCl-o-methyl also reduced peripheral interleukin (IL)-17. In addition, expression of the chemokine CXCL1, which is associated with developmental oligodendrogenesis, was upregulated by IndCl and both analogues. Furthermore, callosal compound action potential recordings from analogue-treated mice demonstrated a larger N1 component amplitude compared to vehicle, suggesting more functionally myelinated fibers. Thus, the o-Methyl and o-Chloro IndCl analogues represent a class of ERß ligands that offer significant remyelination and neuroprotection as well as modulation of the immune system; hence, they appear appropriate to consider further for therapeutic development in multiple sclerosis and other demyelinating diseases.


Asunto(s)
Cuerpo Calloso , Receptor beta de Estrógeno/agonistas , Factores Inmunológicos/farmacología , Indazoles/farmacología , Esclerosis Múltiple , Remielinización/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Citocinas/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Ligandos , Masculino , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología
10.
Proc Natl Acad Sci U S A ; 115(24): 6291-6296, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844175

RESUMEN

Estrogen receptor ß (ERß) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERß ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERß ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERß ligands at peak EAE were assessed. All ERß ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERß ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERß ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERß ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis.


Asunto(s)
Axones/metabolismo , Quimiocina CXCL1/metabolismo , Receptor beta de Estrógeno/metabolismo , Vaina de Mielina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Axones/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Ligandos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Receptores de Interleucina-8B/metabolismo
12.
J Neurosci Res ; 96(1): 31-44, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28580666

RESUMEN

In the central nervous system (CNS), connexin (Cx)s and pannexin (Panx)s are an integral component of homeostatic neuronal excitability and synaptic plasticity. Neuronal Cx gap junctions form electrical synapses across biochemically similar GABAergic networks, allowing rapid and extensive inhibition in response to principle neuron excitation. Glial Cx gap junctions link astrocytes and oligodendrocytes in the pan-glial network that is responsible for removing excitotoxic ions and metabolites. In addition, glial gap junctions help constrain excessive excitatory activity in neurons and facilitate astrocyte Ca2+ slow wave propagation. Panxs do not form gap junctions in vivo, but Panx hemichannels participate in autocrine and paracrine gliotransmission, alongside Cx hemichannels. ATP and other gliotransmitters released by Cx and Panx hemichannels maintain physiologic glutamatergic tone by strengthening synapses and mitigating aberrant high frequency bursting. Under pathological depolarizing and inflammatory conditions, gap junctions and hemichannels become dysregulated, resulting in excessive neuronal firing and seizure. In this review, we present known contributions of Cxs and Panxs to physiologic neuronal excitation and explore how the disruption of gap junctions and hemichannels lead to abnormal glutamatergic transmission, purinergic signaling, and seizures.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Homeostasis/fisiología , Neuroglía/metabolismo , Animales , Señalización del Calcio/fisiología , Enfermedades del Sistema Nervioso Central/patología , Conexinas/química , Uniones Comunicantes/química , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/química , Neuroglía/patología
13.
J Neurosci Methods ; 284: 71-84, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28396177

RESUMEN

BACKGROUND: While many groups use experimental autoimmune encephalomyelitis (EAE) as a model to uncover therapeutic targets and understand the pathology underlying multiple sclerosis (MS), EAE protocol variability introduces discrepancies in central nervous system (CNS) pathogenesis and clinical disease, limiting the comparability between studies and slowing much-needed translational research. OPTIMIZED METHOD: Here we describe a detailed, reliable protocol for chronic EAE induction in C57BL/6 mice utilizing two injections of myelin oligodendrocyte glycoprotein (35-55) peptide mixed with complete Freund's adjuvant and paired with pertussis toxin. RESULTS: The active MOG35-55-EAE protocol presented here induces ascending paralysis in 80-100% of immunized mice. We observe: (1) consistent T cell immune activation, (2) robust CNS infiltration by peripheral immune cells, and (3) perivascular demyelinating lesions concurrent with axon damage in the spinal cord and various brain regions, including the optic nerve, cortex, hippocampus, internal capsule, and cerebellum. COMPARISON WITH EXISTING METHOD(S): Lack of detailed protocols, combined with variability between laboratories, make EAE results difficult to compare and hinder the use of this model for therapeutic development. We provide the most detailed active MOG35-55-EAE protocol to date. With this protocol, we observe high disease incidence and a consistent, reliable disease course. The resulting pathology is MS-like and includes optic neuritis, perivascular mononuclear infiltration, CNS axon demyelination, and axon damage in both infiltrating lesions and otherwise normal-appearing white matter. CONCLUSIONS: By providing a detailed active MOG35-55-EAE protocol that yields consistent and robust pathology, we aim to foster comparability between pre-clinical studies and facilitate the discovery of MS therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Adyuvante de Freund , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito , Animales , Combinación de Medicamentos , Encefalomielitis Autoinmune Experimental/inducido químicamente , Femenino , Humanos , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Fragmentos de Péptidos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
14.
Neuroscience ; 346: 409-422, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28153692

RESUMEN

Multiple sclerosis (MS) patients are three to six times more likely to develop epilepsy compared to the rest of the population. Seizures are more common in patients with early onset or progressive forms of the disease and prognosticate rapid progression to disability and death. Gray matter atrophy, hippocampal lesions, interneuron loss, and elevated juxtacortical lesion burden have been identified in MS patients with seizures; however, translational studies aimed at elucidating the pathophysiological processes underlying MS epileptogenesis are limited. Here, we report that cuprizone-mediated chronically demyelinated (9-12weeks) mice exhibit marked changes to dorsal hippocampal electroencephalography (EEG) and evidence of overt seizure activity. Immunohistochemical (IHC) analyses within the hippocampal CA1 region revealed extensive demyelination, loss of parvalbumin (PV+) interneurons, widespread gliosis, and changes in aquaporin-4 (AQP4) expression. Our results suggest that chronically demyelinated mice are a valuable model with which we may begin to understand the mechanisms underlying demyelination-induced seizures.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Hipocampo/fisiopatología , Esclerosis Múltiple/fisiopatología , Convulsiones/fisiopatología , Animales , Acuaporina 4/metabolismo , Cuprizona/administración & dosificación , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Electroencefalografía , Gliosis/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Convulsiones/inducido químicamente , Convulsiones/patología
15.
J Steroid Biochem Mol Biol ; 160: 43-52, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26776441

RESUMEN

Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) ß agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERß agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERß agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Descubrimiento de Drogas/métodos , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Estrógenos/metabolismo , Humanos , Ligandos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
J Neurosci Res ; 92(12): 1621-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24989965

RESUMEN

Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function.


Asunto(s)
Axones/metabolismo , Encefalomielitis Autoinmune Experimental/complicaciones , Inmunosupresores/uso terapéutico , Trastornos del Movimiento/tratamiento farmacológico , Conducción Nerviosa/efectos de los fármacos , Péptidos/uso terapéutico , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Axones/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Acetato de Glatiramer , Inmunosupresores/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos del Movimiento/etiología , Trastornos del Movimiento/patología , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/patología , Péptidos/farmacología , Índice de Severidad de la Enfermedad , Médula Espinal/patología , Factores de Tiempo
17.
Brain Behav ; 3(6): 664-82, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24363970

RESUMEN

BACKGROUND: Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future treatment of multiple sclerosis (MS), as well as other diseases. Laquinimod (LQ) is an orally administered, central nervous system (CNS)-active immunomodulator with demonstrated efficacy in MS clinical trials and a favorable safety and tolerability profile. AIMS: We aimed to explore the pathological, functional, and behavioral consequences of prophylactic and therapeutic (after presentation of peak clinical disease) LQ treatment in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. MATERIALS AND METHODS: Active EAE-induced 8-week-old C57BL/6 mice were treated with 5 or 25 mg/kg/day LQ via oral gavage beginning on EAE post-immunization day 0, 8, or 21. Clinical scores and rotorod motor performance were assessed throughout the disease course. Immune analysis of autoantigen-stimulated splenocytes, electrophysiological conduction of callosal axons, and immunohistochemistry of white matter-rich corpus callosum and spinal cord were performed. RESULTS: Prophylactic and therapeutic treatment with LQ significantly decreased mean clinical disease scores, inhibited Th1 cytokine production, and decreased the CNS inflammatory response. LQ-induced improvement in axon myelination and integrity during EAE was functional, as evidenced by significant recovery of callosal axon conduction and axon refractoriness and pronounced improvement in rotorod motor performance. These improvements correlate with LQ-induced attenuation of EAE-induced demyelination and axon damage, and improved myelinated axon numbers. DISCUSSION: Even when initiated at peak disease, LQ treatment has beneficial effects within the chronic EAE mouse model. In addition to its immunomodulatory effects, the positive effects of LQ treatment on oligodendrocyte numbers and myelin density are indicative of significant, functional neuroprotective and neurorestorative effects. CONCLUSIONS: Our results support a potential neuroprotective, in addition to immunomodulatory, effect of LQ treatment in inhibiting ongoing MS/EAE disease progression.

18.
J Biol Chem ; 288(25): 18047-57, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23645679

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39(-/-) mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Quinasa 5 Dependiente de la Ciclina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Proteínas Ligadas a Lípidos , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Vaina de Mielina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Neurobiol Dis ; 56: 131-44, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23603111

RESUMEN

The identification of a drug that stimulates endogenous myelination and spares axon degeneration during multiple sclerosis (MS) could potentially reduce the rate of disease progression. Using experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, we have previously shown that prophylactic administration of the estrogen receptor (ER) ß ligand 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) decreases clinical disease, is neuroprotective, stimulates endogenous myelination, and improves axon conduction without altering peripheral cytokine production or reducing central nervous system (CNS) inflammation. Here, we assessed the effects of therapeutic DPN treatment during peak EAE disease, which represents a more clinically relevant treatment paradigm. In addition, we investigated the mechanism of action of DPN treatment-induced recovery during EAE. Given that prophylactic and therapeutic treatments with DPN during EAE improved remyelination-induced axon conduction, and that ER (α and ß) and membrane (m)ERs are present on oligodendrocyte lineage cells, a direct effect of treatment on oligodendrocytes is likely. DPN treatment of EAE animals resulted in phosphorylated ERß and activated the phosphatidylinositol 3-kinase (PI3K)/serine-threonine-specific protein kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, a pathway required for oligodendrocyte survival and axon myelination. These results, along with our previous studies of prophylactic DPN treatment, make DPN and similar ERß ligands immediate and favorable therapeutic candidates for demyelinating disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Receptor beta de Estrógeno/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Nitrilos/uso terapéutico , Oligodendroglía/efectos de los fármacos , Proteína Oncogénica v-akt/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/fisiología , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calpaína/metabolismo , Caspasa 3/metabolismo , Cuerpo Calloso/patología , Fenómenos Electrofisiológicos/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Inmunohistoquímica , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Equilibrio Postural/efectos de los fármacos , Médula Espinal/patología
20.
Brain Pathol ; 23(4): 462-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23311751

RESUMEN

Sex differences in the structure and organization of the corpus callosum (CC) can be attributed to genetic, hormonal or environmental effects, or a combination of these factors. To address the role of gonadal hormones on axon myelination, functional axon conduction and immunohistochemistry analysis of the CC in intact, gonadectomized and hormone-replaced gonadectomized animals were used. These groups were subjected to cuprizone diet-induced demyelination followed by remyelination. The myelinated component of callosal compound action potential was significantly decreased in ovariectomized and castrated animals under normal myelinating condition. Compared to gonadally intact cohorts, both gonadectomized groups displayed more severe demyelination and inhibited remyelination. Castration in males was more deleterious than ovariectomy in females. Callosal conduction in estradiol-supplemented ovariectomized females was significantly increased during normal myelination, less attenuated during demyelination, and increased beyond placebo-treated ovariectomized or intact female levels during remyelination. In castrated males, the non-aromatizing steroid dihydrotestosterone was less efficient than testosterone and estradiol in restoring normal myelination/axon conduction and remyelination to levels of intact males. Furthermore, in both sexes, estradiol supplementation in gonadectomized groups increased the number of oligodendrocytes. These studies suggest an essential role of estradiol to promote efficient CC myelination and axon conduction in both sexes.


Asunto(s)
Cuerpo Calloso/patología , Enfermedades Desmielinizantes/sangre , Enfermedades Desmielinizantes/patología , Hormonas Esteroides Gonadales/sangre , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Castración , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/ultraestructura , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/ultraestructura , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de la Monoaminooxidasa/toxicidad , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...