Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Curr Res Toxicol ; 6: 100170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737010

RESUMEN

The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.

2.
Adv Neurotoxicol ; 11: 133-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741946

RESUMEN

The existing data demonstrate that probiotic supplementation affords protective effects against neurotoxicity of exogenous (e.g., metals, ethanol, propionic acid, aflatoxin B1, organic pollutants) and endogenous (e.g., LPS, glucose, Aß, phospho-tau, α-synuclein) agents. Although the protective mechanisms of probiotic treatments differ between various neurotoxic agents, several key mechanisms at both the intestinal and brain levels seem inherent to all of them. Specifically, probiotic-induced improvement in gut microbiota diversity and taxonomic characteristics results in modulation of gut-derived metabolite production with increased secretion of SFCA. Moreover, modulation of gut microbiota results in inhibition of intestinal absorption of neurotoxic agents and their deposition in brain. Probiotics also maintain gut wall integrity and inhibit intestinal inflammation, thus reducing systemic levels of LPS. Centrally, probiotics ameliorate neurotoxin-induced neuroinflammation by decreasing LPS-induced TLR4/MyD88/NF-κB signaling and prevention of microglia activation. Neuroprotective mechanisms of probiotics also include inhibition of apoptosis and oxidative stress, at least partially by up-regulation of SIRT1 signaling. Moreover, probiotics reduce inhibitory effect of neurotoxic agents on BDNF expression, on neurogenesis, and on synaptic function. They can also reverse altered neurotransmitter metabolism and exert an antiamyloidogenic effect. The latter may be due to up-regulation of ADAM10 activity and down-regulation of presenilin 1 expression. Therefore, in view of the multiple mechanisms invoked for the neuroprotective effect of probiotics, as well as their high tolerance and safety, the use of probiotics should be considered as a therapeutic strategy for ameliorating adverse brain effects of various endogenous and exogenous agents.

3.
Adv Neurotoxicol ; 11: 105-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770370

RESUMEN

Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.

4.
Biomolecules ; 14(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38672454

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe deficits in social communication and interaction, repetitive movements, abnormal focusing on objects, or activity that can significantly affect the quality of life of the afflicted. Neuronal and glial cells have been implicated. It has a genetic component but can also be triggered by environmental factors or drugs. For example, prenatal exposure to valproic acid or acetaminophen, or ingestion of propionic acid, can increase the risk of ASD. Recently, epigenetic influences on ASD have come to the forefront of investigations on the etiology, prevention, and treatment of this disorder. Epigenetics refers to DNA modifications that alter gene expression without making any changes to the DNA sequence. Although an increasing number of pharmaceuticals and environmental chemicals are being implicated in the etiology of ASD, here, we specifically focus on the molecular influences of the abovementioned chemicals on epigenetic alterations in neuronal and glial cells and their potential connection to ASD. We conclude that a better understanding of these phenomena can lead to more effective interventions in ASD.


Asunto(s)
Trastorno del Espectro Autista , Epigénesis Genética , Neuroglía , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/inducido químicamente , Humanos , Epigénesis Genética/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/efectos de los fármacos , Ácido Valproico/farmacología , Ácido Valproico/efectos adversos , Propionatos/farmacología , Animales , Acetaminofén/efectos adversos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Metilación de ADN/efectos de los fármacos
5.
Cells ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534318

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Receptores Nicotínicos , Humanos , Enfermedad de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrocitos/metabolismo
6.
Neurotox Res ; 42(2): 18, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393521

RESUMEN

Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Citoplasma/metabolismo , Enfermedades Neurodegenerativas/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38322648

RESUMEN

Reciprocal communication between the gut microbiota and the brain, commonly referred to as the "gut-brain-axis" is crucial in maintaining overall physiological homeostasis. Gut microbiota development and brain maturation (neuronal connectivity and plasticity) appear to be synchronized and to follow the same timeline during childhood (immature), adolescence (expansion) and adulthood (completion). It is important to note that the mesolimbic reward circuitry develops early on, whereas the maturation of the inhibitory frontal cortical neurons is delayed. This imbalance can lead to increased acquirement of reward-seeking and risk-taking behaviors during adolescence, and consequently eventuate in heightened risk for substance abuse. Thus, there is high initiation of alcohol drinking in early adolescence that significantly increases the risk of alcohol use disorder (AUD) in adulthood. The underlying causes for heightened AUD risk are not well understood. It is suggested that alcohol-associated gut microbiota impairment during adolescence plays a key role in AUD neurodevelopment in adulthood. Furthermore, alcohol-induced dysregulation of microglia, either directly or indirectly through interaction with gut microbiota, may be a critical neuroinflammatory pathway leading to neurodevelopmental impairments and AUD. In this review article, we highlight the influence of adolescent alcohol drinking on gut microbiota, gut-brain axis and microglia, and eventual manifestation of AUD. Furthermore, novel therapeutic interventions via gut microbiota manipulations are discussed briefly.

8.
Neurotox Res ; 42(1): 3, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095760

RESUMEN

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.


Asunto(s)
Neuroblastoma , Nicotina , Humanos , Nicotina/toxicidad , Manganeso/toxicidad , Hierro/toxicidad , Butiratos/farmacología , Línea Celular Tumoral , Técnicas de Cultivo de Célula
9.
Biometals ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973679

RESUMEN

Methylmercury (MeHg) remains a global public health issue because of its frequent presence in human food sources obtained from the water. The excretion of MeHg in humans occurs slowly with a biological half-time of 32-47 days. Short-term MeHg exposure may cause long-lasting neurotoxicity. The excretion through feces is a major route in the demethylation of MeHg. Accumulating evidence suggests that the intestinal microbiota plays an important role in the demethylation of MeHg, thereby protecting the host from neurotoxic effects. Here, we discuss recent developments on the role of intestinal microbiota in MeHg metabolism, based on in vitro cell culture experiments, experimental animal studies and human investigations. Demethylation by intestinal bacteria is the rate-limiting step in MeHg metabolism and elimination. The identity of bacteria strains responsible for this biotransformation is currently unknown; however, the non-homogenous distribution of intestinal microbiota may lead to different demethylation rates in the intestinal tract. The maintenance of intestinal barrier function by intestinal microbiota may afford protection against MeHg-induced neurotoxicity, which warrant future investigations. We also discuss studies investigating the effects of MeHg exposure on the population structural stability of intestinal microbiota in several host species. Although this is an emerging area in metal toxicity, current research suggests that a change in certain phyla in the intestinal microbiota may indicate MeHg overexposure.

10.
Res Sq ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37886507

RESUMEN

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. The ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but indicate distinct mechanisms of action for each one. Furthermore, potential utility of the combination of butyrate and nicotine against heavy metal toxicities is suggested.

11.
Biomolecules ; 13(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892231

RESUMEN

Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Microbioma Gastrointestinal , Adolescente , Humanos , Preescolar , Plomo/toxicidad , Trastorno del Espectro Autista/etiología , Encéfalo
12.
Front Biosci (Landmark Ed) ; 28(9): 204, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37796714

RESUMEN

Titanium dioxide nanoparticles (TiO2NPs) are widely produced and used nanoparticles. Yet, TiO2NP exposure may possess toxic effects to different cells and tissues, including the brain. Recent studies significantly expanded the understanding of the molecular mechanisms underlying TiO2NP neurotoxicity implicating a number of both direct and indirect mechanisms. In view of the significant recent progress in research on TiO2NP neurotoxicity, the objective of the present study is to provide a narrative review on the molecular mechanisms involved in its neurotoxicity, with a special focus on the studies published in the last decade. The existing data demosntrate that although TiO2NP may cross blood-brain barrier and accumulate in brain, its neurotoxic effects may be mediated by systemic toxicity. In addition to neuronal damage and impaired neurogenesis, TiO2NP exposure also results in reduced neurite outgrowth and impaired neurotransmitter metabolism, especially dopamine and glutamate. TiO2NP exposure was also shown to promote α-synuclein and ß-amyloid aggregation, thus increasing its toxicity. Recent findings also suggest that epigenetic effects and alterations in gut microbiota biodiversity contribute to TiO2NP neurotoxicity. Correspondingly, in vivo studies demosntrated that TiO2NPs induce a wide spectrum of adverse neurobehavioral effects, while epidemiological data are lacking. In addition, TiO2NPs were shown to promote neurotoxic effects of other toxic compounds. Here we show the contribution of a wide spectrum of molecular mechanisms to TiO2NP-induced neurotoxicity; yet, the role of TiO2NP exposure in adverse neurological outcomes in humans has yet to be fully appreciated.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Nanopartículas/toxicidad , Antioxidantes/farmacología , Titanio/toxicidad , Nanopartículas del Metal/toxicidad
13.
Environ Res ; 238(Pt 1): 117134, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714366

RESUMEN

The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid ß-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.


Asunto(s)
Arsénico , Mercurio , Enfermedad del Hígado Graso no Alcohólico , Humanos , Cadmio , Arsénico/metabolismo , Plomo/metabolismo , Mercurio/metabolismo , Hígado
14.
Biogerontology ; 24(6): 925-935, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515624

RESUMEN

Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.


Asunto(s)
Hipocampo , Sinapsis , Ratas , Masculino , Femenino , Animales , Ratas Wistar , Sinapsis/ultraestructura , Envejecimiento
15.
Neurosci Lett ; 805: 137238, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37037302

RESUMEN

Addiction to toluene-containing volatile inhalants is of significant medical and social concern, particularly among youth. These concerns are underscored by the fact that the majority of adult abusers of toluene started as teenagers. Surprisingly, however, the lasting effects of chronic toluene exposure, especially in various age groups, have not been well investigated. Recently, we reported that adolescent and adult male Wistar rats show differential responses to chronic toluene exposure in recognition memory tasks. Since different cognitive functions may be differentially affected by drugs of abuse, we used the same model to evaluate the short- and long-term effects of chronic toluene on spatial learning and memory using Morris water maze. Daily exposure to toluene (2000 ppm) for 40 days (5 min/day) resulted in age-dependent behavioral changes. For example, only adolescent animals showed a decrease in time and distance travelled to find the hidden platform 24 h after the last toluene exposure. In contrast, only adult rats exhibited a decrease in acquisition time and distance travelled at 90 days' post toluene exposure. Our data provide further support for the contention that age-dependent responses should be taken into consideration in interventional attempts to overcome specific detrimental consequences of chronic toluene exposure.


Asunto(s)
Memoria Espacial , Tolueno , Ratas , Masculino , Animales , Ratas Wistar , Tolueno/toxicidad , Tiempo , Cognición , Aprendizaje por Laberinto
16.
J Diabetes Res ; 2023: 9947294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815184

RESUMEN

Epigenetic changes in pancreatic beta cells caused by sustained high blood glucose levels, as seen in prediabetic conditions, may contribute to the etiology of diabetes. To delineate a direct cause and effect relationship between high glucose and epigenetic changes, we cultured human pancreatic beta cells derived from induced pluripotent stem cells and treated them with either high or low glucose, for 14 days. We then used the Arraystar 4x180K HG19 RefSeq Promoter Array to perform whole-genome DNA methylation analysis. A total of 478 gene promoters, out of a total of 23,148 present on the array (2.06%), showed substantial differences in methylation (p < 0.01). Out of these, 285 were hypomethylated, and 193 were hypermethylated in experimental vs. control. Ingenuity Pathway Analysis revealed that the main pathways and networks that were differentially methylated include those involved in many systems, including those related to development, cellular growth, and proliferation. Genes implicated in the etiology of diabetes, including networks involving glucose metabolism, insulin secretion and regulation, and cell cycle regulation, were notably altered. Influence of upstream regulators such as MRTFA, AREG, and NOTCH3 was predicted based on the altered methylation of their downstream targets. The study validated that high glucose levels can directly cause many epigenetic changes in pancreatic beta cells, suggesting that this indeed may be a mechanism involved in the etiology of diabetes.


Asunto(s)
Células Secretoras de Insulina , Humanos , Metilación de ADN , Epigénesis Genética , Secreción de Insulina , Glucosa/farmacología
17.
Neurotox Res ; 41(2): 187-200, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662412

RESUMEN

It is now well recognized that a bidirectional relationship between gut microbiota and the brain, referred to as the gut-brain axis, plays a prominent role in maintaining homeostasis and that a disruption in this axis can result in neuroinflammatory response and neurological disorders such as Parkinson's disease (PD). The protective action of probiotics such as Bifidobacterium animalis ssp. lactis Bb12 and Lactobacillus rhamnosus GG in various animal models of PD has been reported. Therefore, in this study, we used an inflammatory model of PD to assess the effects of a combination of these two probiotics (Microbiot®) on motor behavior as well as on the response of microglia, including microglia morphology, to gain a better understanding of their mechanism of action. Microbiot® (300 µL) was administered orally once daily for 15 days in a lipopolysaccharide-induced PD model using male Wistar rats. Although LPS-induced motor asymmetry in cylinder test was not affected by Microbiot®, impairment of motor coordination in the narrow-beam test was significantly reduced by this probiotic. Moreover, Microbiot® treatment reduced microglial activation suggesting an anti-inflammatory effect. While further mechanistic investigation of Microbiot® in neurodegenerative diseases is warranted, our results support the potential utility of probiotics in PD.


Asunto(s)
Bifidobacterium animalis , Lacticaseibacillus rhamnosus , Enfermedad de Parkinson , Probióticos , Ratas , Masculino , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Wistar , Probióticos/farmacología , Probióticos/uso terapéutico , Lipopolisacáridos/toxicidad
18.
Int J Neuropsychopharmacol ; 26(3): 230-239, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36433759

RESUMEN

BACKGROUND: Paroxetine (PX) is a widely used antidepressant with side effects such as weakness, dizziness, and trouble sleeping. In search of novel compounds with better efficacy and fewer side effects, we synthesized 3HPX, a hydroxylated analog of PX, and compared the 2 in silico for their pharmacokinetic and binding properties and in vivo for their antidepressant and potential neuroprotective effects. METHODS: In silico studies compared pharmacological properties as well as interactions of PX and 3HPX with the serotonin transporter. In vivo studies utilized an animal model of comorbid depression-Parkinson disease. Adult male Wistar rats were injected (sterotaxically) with lipopolysaccharide in the striatum (unilaterally), followed by 14 days of once-daily injections (i.p.) of 10 mg/kg PX or 3HPX. Animals were tested for motor asymmetry and locomotor activity as well as indices of anhedonia and helplessness using sucrose preference and forced swim tests, respectively. Brains of these animals were collected after the last test, and tyrosine hydroxylase-positive neurons in substantia nigra pars compacta and Iba-1-positive stained microglia in ipsilateral striatum were measured. RESULTS: In silico findings indicated that 3HPX could bind stronger to serotonin transporter and also have a better clearance and hence less toxicity compared with PX. In vivo results revealed a more effective reversal of immobility in the swim test, substantial increase in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta, and more ramified Iba-1+ cells by 3HPX compared with PX. CONCLUSION: The findings suggest superior effectiveness of 3HPX as an antidepressant and neuroprotectant compared with PX and hence potential utility in Parkinson disease depression co-morbidity.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Masculino , Animales , Paroxetina/farmacología , Paroxetina/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Wistar , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Modelos Animales de Enfermedad
19.
Neurotox Res ; 41(2): 141-148, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36585544

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease associated with loss of dopaminergic neurons in the substantia nigra pars compacta. Although aging is the primary cause, environmental and genetic factors have also been implicated in its etiology. In fact, the sporadic nature of PD (i.e., unknown etiology) renders the uncovering of the exact pathogenic mechanism(s) or development of effective pharmacotherapies challenging. In search of novel neuroprotectants, we showed that butyrate (BUT), a short-chain fatty acid, protects against salsolinol (SALS)-induced toxicity in human neuroblastoma-derived SH-SY5Y cells, which are considered an in-vitro model of PD. Dihydromyricetin (DHM), a flavonoid derived from Asian medicinal plant, has also shown effectiveness against oxidative damage and neuroinflammation, hallmarks of neurodegenerative diseases. Here we show that pretreatment of SH-SY5Y cells with DHM concentration-dependently prevented SALS-induced toxicity and that a combination of DHM and BUT resulted in a synergistic protection. The effects of both DHM and BUT in turn could be completely blocked by flumazenil (FLU), a GABAA antagonist acting at benzodiazepine receptor site, and by bicuculline (BIC), a GABAA antagonist acting at orthosteric site. Beta-hydroxybutyrate (BHB), a free fatty acid 3 (FA3) receptor antagonist, also fully blocked the protective effect of DHM. BHB was shown previously to only partially block the protective effect of BUT. Thus, there are some overlaps and some distinct differences in protective mechanisms of DHM and BUT against SALS-induced toxicity. It is suggested that a combination of DHM and BUT may have therapeutic potential in PD. However, further in-vivo verifications are necessary.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/prevención & control , Neuronas Dopaminérgicas , Línea Celular Tumoral , Neuroblastoma/patología , Dopamina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácido gamma-Aminobutírico
20.
Curr Pharm Biotechnol ; 24(3): 401-410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35638271

RESUMEN

Recent reports show coagulopathy as a potential complication and poorer outcome of coronavirus disease 2019 (COVID-19), especially in those with comorbid conditions such as diabetes and hypertension as thrombosis could result in stroke and heart attacks. Indeed, cardiovascular complications in COVID-19 account for 40% of mortality. Although there is no standard treatment protocol or guidelines for COVID-19, it is a common practice to use anti-inflammatory corticosteroids and anti-coagulants, especially for severe COVID-19 patients. It has also been confirmed that deficiencies of vitamin D and/or vitamin K can exacerbate premorbid cardiovascular and diabetes conditions associated with COVID-19, at least partially due to a higher incidence of coagulopathy. Here, we discuss the roles of vitamins D and K in general and in COVID-19-related coagulopathy. Moreover, the suggestion for proper supplementations of these vitamins in countering COVID-19 is provided.


Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Vitamina A , Vitaminas/uso terapéutico , Vitamina D/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...