Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8863, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614140

RESUMEN

Tick-borne encephalitis virus and West Nile virus can cross the blood-brain barrier via hematogenous route. The attachment of a virion to the cells of a neurovascular unit, which is mediated by domain III of glycoprotein E, initiates a series of events that may aid viral entry. Thus, we sought to uncover the post-attachment biological events elicited in brain microvascular endothelial cells by domain III. RNA sequencing of cells treated with DIII of TBEV and WNV showed significant alteration in the expression of 309 and 1076 genes, respectively. Pathway analysis revealed activation of the TAM receptor pathway. Several genes that regulate tight-junction integrity were also activated, including pro-inflammatory cytokines and chemokines, cell-adhesion molecules, claudins, and matrix metalloprotease (mainly ADAM17). Results also indicate activation of a pro-apoptotic pathway. TLR2 was upregulated in both cases, but MyD88 was not. In the case of TBEV DIII, a MyD88 independent pathway was activated. Furthermore, both cases showed dramatic dysregulation of IFN and IFN-induced genes. Results strongly suggest that the virus contact to the cell surface emanates a series of events namely viral attachment and diffusion, breakdown of tight junctions, induction of virus uptake, apoptosis, reorganization of the extracellular-matrix, and activation of the innate immune system.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Encéfalo/metabolismo , Encefalitis Transmitida por Garrapatas/metabolismo , Células Endoteliales/metabolismo , Glicoproteínas/metabolismo , Humanos , Fiebre del Nilo Occidental/metabolismo
2.
Front Microbiol ; 13: 801466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432292

RESUMEN

West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV's envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297-S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299-K307 and DIII-2V371-R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299-K307 and DIII-2V371-R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV-like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371-R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV-induced neuropathogenesis.

3.
Front Microbiol ; 12: 760627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819924

RESUMEN

Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.

4.
Sci Rep ; 11(1): 20131, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635758

RESUMEN

West Nile virus (WNV), re-emerging neurotropic flavivirus, can cross the blood-brain barrier (BBB) and cause fatal encephalitis and meningitis. Infection of the human brain microvascular endothelial cells (hBMECs), building blocks of the BBB, represents the pivotal step in neuroinvasion. Domain III (DIII) of the envelope (E) glycoprotein is a key receptor-binding domain, thus, it is an attractive target for anti-flavivirus strategies. Here, two combinatorial phage display peptide libraries, Ph.D.-C7C and Ph.D.-12, were panned against receptor-binding site (RBS) on DIII to isolate peptides that could block DIII. From series of pannings, nine peptides (seven 7-mer cyclic and two 12-mer linear) were selected and overexpressed in E. coli SHuffle T5. Presence of disulfide bond in 7-mer peptides was confirmed with thiol-reactive maleimide labeling. Except for linear peptide 19 (HYSWSWIAYSPG), all peptides proved to be DIII binders. Among all peptides, 4 cyclic peptides (CTKTDVHFC, CIHSSTRAC, CTYENHRTC, and CLAQSHPLC) showed significant blocking of the interaction between DIII and hBMECs, and ability to neutralize infection in cultured cells. None of these peptides showed toxic or hemolytic activity. Peptides identified in this study may serve as potential candidates for the development of novel antiviral therapeutics against WNV.


Asunto(s)
Encéfalo/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Fiebre del Nilo Occidental/prevención & control , Virus del Nilo Occidental/fisiología , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/virología , Células Cultivadas , Endotelio Vascular/metabolismo , Endotelio Vascular/virología , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Biblioteca de Péptidos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Fiebre del Nilo Occidental/metabolismo , Fiebre del Nilo Occidental/virología
5.
Ticks Tick Borne Dis ; 11(4): 101451, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360026

RESUMEN

Lyme borreliosis is one of the major tick-borne diseases in Europe. Events of the translocation of Borrelia across the blood-brain barrier (BBB) involve multiple interactions between borrelial surface proteins and receptors on the brain microvascular endothelial cells (hBMECs). In this study, we aimed to identify proteins of Borrelia that plausibly interact with hBMECs. The surface proteome of live Borrelia (a neuroinvasive strain of B. garinii) was crosslinked with biotin prior to its incubation with hBMECs. The interacting proteins were recovered by affinity purification, followed by SWATH-MS. Twenty-four interacting candidates were grouped into outer membrane proteins (n = 12) and inner membrane proteins (n = 12) based on the subcellular location as per the predictions of LocateP. Other algorithms like TMHMM 2.0 and LipoP, ontology search and literature review were subsequently applied to each of the identified protein candidates to shortlist the most probable interactors. Six proteins namely, LysM domain protein, BESBP-5, Antigen S1, CRASP-1 (Bg071), Erp23 protein and Mlp family Lipoprotein were selected to produce their recombinant forms and experimentally validate their interaction with hBMECs. All the recombinant proteins interacted with hBMECs, in ELISA and immunocytochemistry. We present here a high-throughput approach of generating a dataset of plausible borrelial ligands followed by a systematic bioinformatic pipeline to categorize the proteins for experimental validation.


Asunto(s)
Proteínas Bacterianas/genética , Grupo Borrelia Burgdorferi/genética , Encéfalo/microbiología , Células Endoteliales/microbiología , Microvasos/microbiología , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Grupo Borrelia Burgdorferi/metabolismo , Enfermedad de Lyme
6.
Sci Rep ; 10(1): 1163, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980725

RESUMEN

Ligand-receptor interactions play a crucial role in the plethora of biological processes. Several methods have been established to reveal ligand-receptor interface, however, the majority of methods are time-consuming, laborious and expensive. Here we present a straightforward and simple pipeline to identify putative receptor-binding sites on the pathogen ligands. Two model ligands (bait proteins), domain III of protein E of West Nile virus and NadA of Neisseria meningitidis, were incubated with the proteins of human brain microvascular endothelial cells immobilized on nitrocellulose or PVDF membrane, the complex was trypsinized on-membrane, bound peptides of the bait proteins were recovered and detected on MALDI-TOF. Two peptides of DIII (~916 Da and ~2003 Da) and four peptides of NadA (~1453 Da, ~1810 Da, ~2051 Da and ~2433 Da) were identified as plausible receptor-binders. Further, binding of the identified peptides to the proteins of endothelial cells was corroborated using biotinylated synthetic analogues in ELISA and immunocytochemistry. Experimental pipeline presented here can be upscaled easily to map receptor-binding sites on several ligands simultaneously. The approach is rapid, cost-effective and less laborious. The proposed experimental pipeline could be a simpler alternative or complementary method to the existing techniques used to reveal amino-acids involved in the ligand-receptor interface.


Asunto(s)
Sitios de Unión , Ligandos , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Receptores de Superficie Celular/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Aminoácidos , Colodión , Células Endoteliales/metabolismo , Proteínas Inmovilizadas , Proteínas de la Membrana/química , Membranas Artificiales , Neisseria meningitidis/química , Polivinilos , Unión Proteica , Dominios Proteicos , Receptores Virales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Virus del Nilo Occidental/química
7.
Sci Rep ; 9(1): 18763, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822804

RESUMEN

Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.


Asunto(s)
Adhesinas Bacterianas/inmunología , Barrera Hematoencefálica/metabolismo , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica/inmunología , Neisseria meningitidis/inmunología , Adhesinas Bacterianas/metabolismo , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/inmunología , Línea Celular , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/microbiología , RNA-Seq , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo
8.
Front Microbiol ; 9: 2294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319591

RESUMEN

Neisseria meningitidis is able to translocate the blood-brain barrier and cause meningitis. Bacterial translocation is a crucial step in the onset of neuroinvasion that involves interactions between pathogen surface proteins and host cells receptors. In this study, we applied a systematic workflow to recover and identify proteins of N. meningitidis that may interact with human brain microvascular endothelial cells (hBMECs). Biotinylated proteome of N. meningitidis was incubated with hBMECs, interacting proteins were recovered by affinity purification and identified by SWATH-MS. Interactome of N. meningitidis comprised of 41 potentially surface exposed proteins. These were assigned into groups based on their probability to interact with hBMECs: high priority candidates (21 outer membrane proteins), medium priority candidates (14 inner membrane proteins) and low priority candidates (six secretory proteins). Ontology analysis provided information for 17 out of 41 surface proteins. Based on the series of bioinformatic analyses and literature review, five surface proteins (adhesin MafA1, major outer membrane protein P.IB, putative adhesin/invasion, putative lipoprotein and membrane lipoprotein) were selected and their recombinant forms were produced for experimental validation of interaction with hBMECs by ELISA and immunocytochemistry. All candidates showed interaction with hBMECs. In this study, we present a high-throughput approach to generate a dataset of plausible meningococcal ligands followed by systematic bioinformatic pipeline to categorize the proteins for experimental validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...