Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37046818

RESUMEN

BACKGROUND: Recent studies have shown that hyperspectral imaging (HSI) combined with neural networks can detect colorectal cancer. Usually, different pre-processing techniques (e.g., wavelength selection and scaling, smoothing, denoising) are analyzed in detail to achieve a well-trained network. The impact of post-processing was studied less. METHODS: We tested the following methods: (1) Two pre-processing techniques (Standardization and Normalization), with (2) Two 3D-CNN models: Inception-based and RemoteSensing (RS)-based, with (3) Two post-processing algorithms based on median filter: one applies a median filter to a raw predictions map, the other applies the filter to the predictions map after adopting a discrimination threshold. These approaches were evaluated on a dataset that contains ex vivo hyperspectral (HS) colorectal cancer records of 56 patients. RESULTS: (1) Inception-based models perform better than RS-based, with the best results being 92% sensitivity and 94% specificity; (2) Inception-based models perform better with Normalization, RS-based with Standardization; (3) Our outcomes show that the post-processing step improves sensitivity and specificity by 6.6% in total. It was also found that both post-processing algorithms have the same effect, and this behavior was explained. CONCLUSION: HSI combined with tissue classification algorithms is a promising diagnostic approach whose performance can be additionally improved by the application of the right combination of pre- and post-processing.

2.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36433516

RESUMEN

Currently, one of the most common causes of death worldwide is cancer. The development of innovative methods to support the early and accurate detection of cancers is required to increase the recovery rate of patients. Several studies have shown that medical Hyperspectral Imaging (HSI) combined with artificial intelligence algorithms is a powerful tool for cancer detection. Various preprocessing methods are commonly applied to hyperspectral data to improve the performance of the algorithms. However, there is currently no standard for these methods, and no studies have compared them so far in the medical field. In this work, we evaluated different combinations of preprocessing steps, including spatial and spectral smoothing, Min-Max scaling, Standard Normal Variate normalization, and a median spatial smoothing technique, with the goal of improving tumor detection in three different HSI databases concerning colorectal, esophagogastric, and brain cancers. Two machine learning and deep learning models were used to perform the pixel-wise classification. The results showed that the choice of preprocessing method affects the performance of tumor identification. The method that showed slightly better results with respect to identifing colorectal tumors was Median Filter preprocessing (0.94 of area under the curve). On the other hand, esophagogastric and brain tumors were more accurately identified using Min-Max scaling preprocessing (0.93 and 0.92 of area under the curve, respectively). However, it is observed that the Median Filter method smooths sharp spectral features, resulting in high variability in the classification performance. Therefore, based on these results, obtained with different databases acquired by different HSI instrumentation, the most relevant preprocessing technique identified in this work is Min-Max scaling.


Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas , Humanos , Bases de Datos Factuales , Algoritmos , Diagnóstico por Imagen
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3865-3868, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892077

RESUMEN

The accurate detection of malignant tissue during colorectal surgery impacts operation outcome. The non-invasive spectral imaging combined with machine learning (ML) methods showed to be promising for tumor identification. However, large spectral range implies large computing time. To reduce the number of features, ML methods (e.g. logistic regression and convolutional neuronal network CNN) were evaluated based on four physiological tissue parameters to automatically classify cancer and healthy mucosa in resected colon tissue. A ROC AUC of 0.81 was achieved with the CNN. This study shows that the use of only specific wavelengths bands can detect cancer.Clinical Relevance- These outcomes support the possibility to automatically classify colon tumor based on physiological parameters calculated using only specific wavelength bands. Hence, future image-guided colorectal surgeries can be performed with real-time multispectral imaging.


Asunto(s)
Neoplasias Colorrectales , Imágenes Hiperespectrales , Neoplasias Colorrectales/diagnóstico por imagen , Diagnóstico por Imagen , Humanos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA